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Group Fairness Classifiers Do Not Tell TheWhole Story.

Many existing approaches usemetrics that offer formal processes for “measuring”

fairness. Group fairness metrics [12, 14] measure disparate treatment of groups

in aggregate. These metrics are useful to demonstrate unfairness, but previous

work has shown that group-fair classifiers can still make clearly unfair predictions

for individuals.

Prediction Sensitivity

Let x represent an input and F(x) represent an output prediction. Our
gradient, which represents the change in prediction over x, is represented
∇F . We estimate how changes in x would affect the prediction F(x) using
the gradient ∇F .
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Figure 1. Overview of calculating prediction sensitivity. Prediction sensitivity is based on

measurements of each feature’s contribution to both protected stastus and the classifier’s

prediction.

Calculating Prediction Sensitivity

We consider a classifier F : Rm → R and an individual input . We would like
to know if for all other individuals y, |F(x) − F(y)| ≤ d(x, y) under the similarity
metric d, as required by individual fairness.

A mapping M : V → ∆(A) satisfies the (D, d)-Lipschitz property if for every pair
of individuals x, y ∈ V :

D(M(x), M(y)) ≤ d(x, y)

Let Td ∈ Rm be a similarity transformation for the distance metric d if ‖Td‖1 = 1
(weights sum to 1) and for all x, y ∈ Rm :

‖(1 − T )(Td ◦ x − Td ◦ y)‖ = d(x, y)
where ◦ is the Hadamard (elementwise) product.
The prediction sensitivity PS(x) ∈ R for an example x is defined as:

PS(x) = (Td(x)) · abs(∇F(x))
where ∇F(x)) is the gradient of F(x) (with respect to x) and abs denotes

element-wise absolute value.

Modeling Individual Fairness with Synthetic Data

Figure 2. Causal graphs for synthetic data. (a) shows a causal graph for “biased” synthetic data,

in which a causal relationship exists between protected status and outcome. (b) shows a

modified causal graph that removes this relationship. Data generated according to model (b) can

be used to train classifiers that satisfy individual fairness.

Our Contribution: Prediction Sensitivity

1. We propose prediction sensitivity, a gradient-based method for measuring

individual fairness.

2. We prove that prediction sensitivity is an upper bound on individual fairness.

3. We show how to use prediction sensitivity to detect biased predictions at

the individual level in deployed models.

4. We present experimental results suggesting that prediction sensitivity is

effective for detecting biased predictions.

Experiments and Evaluations

Figure 3. Using prediction sensitivity to audit models trained on synthetic data. (a) shows that

prediction sensitivity is low for members of the match set, but high for non-members (note the

logarithmic scale in the vertical axis). (b) shows that a distinguisher based on prediction

sensitivity is effective at detecting failures of individual fairness.

Figure 4. Estimated Lipschitz constants for prediction sensitivity. Each plot includes all estimates

from 10 runs of the experiment. In all cases, the estimated Lipschitz constant k̂ increases
sub-linearly with the amount of perturbation, and the estimates were well below 1 for all trials.

Conclusion

Our results suggest that prediction sensitivity is effective at detecting unfair

predictions, but they also reflect the inherent challenge of this task.

Individual predictions with extremely high prediction sensitivity are likely to

be blatantly unfair, and should be easily detected using prediction sensitivity;

however, borderline cases may be more difficult to detect.
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