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Contribution

•Motivation Most supervised learning literatures center on learning
risk-neutral models with low expected losses. However, real-world
concerns often demand that we address training models under other
functionals of the loss distribution:
1 The desired model at test time is risk-sensitive for reasons including
risk aversion, equitable allocations of benefits and harms, or
alignment with human preferences.

2 The desired model at test time is risk-neutral (i.e., with low
expected losses) but the training objective is chosen as other
functionals for reasons including distribution shifts, noisy labels, or
imbalanced dataset.

•Contribution A general learning procedure along with guarantees
for risk-sensitive supervised learning under general risk functionals:
•Uniform convergence for risk estimation that holds

simultaneously for all Hölder risks, yielding learning guarantees for
empirical risk minimization for the broad class of distortion risks.
•A gradient-based method for minimizing distortion risks that

re-weights examples dynamically based on the empirical CDF of
losses, and corresponding convergence guarantees.

Risk-sensitive Learning

•The learner is given iid data Zi = (Xi, Yi), a hypothesis class F and a
loss function ℓ : Y × Y → R for evaluating a prediction.
•The goal is to find a model in the hypothesis class that performs well.

Traditionally, the models are evaluated in terms of their average
performance which corresponds to the expectation functional. However,
one may care about different functionals ρ of the loss distribution, e.g.,
the worst-case performance, the variability of the performance, etc.

f ⋆ ∈ arg min
f∈F

E[ℓ(f (X), Y )]
↓

f ⋆ ∈ arg min
f∈F

ρ[ℓ(f (X), Y )]

•We propose to consider the set of Hölder risk functionals. We
provide a simplified definition here: A risk functional ρ is L-Hölder on a
space of real-valued random variables U if there exist constants p > 0
and L > 0 such that for all U, U ′ ∈ U with CDF FU and FU ′

respectively, the following holds:
|ρ(FU)− ρ(FU ′)| ≤ L∥FU , FU ′∥p

∞.

Examples: Expectation, mean-variance, conditional value at risks,
entropic risks, and cumulative prospect theory risks are Hölder on the set
of bounded random variables.
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General Learning Procedure

1 For hypothesis f , estimate the empirical loss CDF:

F̂f(t) = 1
n

n∑
i=1

I{ℓ(f (Xi), Yi) ≤ t}.

2 Evaluate the risk on the empirical CDF ρ[F̂f ].
3 Minimizing the empirical risk: f̂ ⋆ ∈ arg minf∈F ρ(F̂f).

Uniform Convergence of Risk Estimation

•Why do we study it? The excess risk of f̂ ⋆ is bounded by the following:
ρ(Ff̂ ⋆)− ρ(Ff ⋆) ≤ 2 sup

f∈F
|ρ(F̂f)− ρ(Ff)| (standard inequality)

≤ 2L sup
f∈F
∥F̂f − Ff∥∞ (smoothness of ρ)

•The uniform convergence of risk estimation is reduced to the uniform
convergence of CDF estimation.

Uniform Convergence of CDF Estimation

Theorem 1 Given a hypothesis class F , any loss function ℓ : Y×Y → R,
and n iid samples {Zi}n

i=1, we have that with probability at least 1− δ,

sup
f∈F

sup
r∈R
|F̂ (t; f )− F (t; f )| ≤ 2R(n,F) +

√√√√√√√√√√√
log(1

δ)
2n

,

where R(n,F) = EP,ξ

supf∈F supt∈R
1
n |

∑n
i=1 ξiI{ℓ(f (Xi), Yi)) ≤ t}|

 and ξ
denotes a Rademacher random variable.
Corollary 1 For a finite hypothesis class F ,

R(n,F) ≤
√√√√√√√√√√√
log(4|F|)

2n
.

For an infinite hypothesis class, we consider two approaches:
1 We propose a new notion of permutation complexity that captures the
structure of CDF estimation (e.g., empirical CDFs are monotonic and
bounded) and disentangle the complexity of F from the complexity of the
indicator functions.

2 We use the traditional approach that directly work with a function class
consisting of compositions of f ∈ F and the indicator functions.

Empirical Risk Minimization

We use a gradient-based method to minimize distortion risks (with Hölder
distortion functions) a subset of Hölder risk functionals including the expectation
and conditional value at risk:

ρ(Ff) = ∫∞
0 g(1− Ff(t))dt,

where the distortion function g : [0, 1]→ [0, 1] is non-decreasing with g(0) = 0
and g(1) = 1.
•At iteration t,

θt+1← θt − η (∇θρ(F̂θ) + wt) ,

where θ parameterizes f , η is the learning rate, ∇θρ(F̂θ) is the gradient and
wt is sampled from a d-dimensional Gaussian with mean 0 and variance 1

d.
• If {ℓ(fθ(xi), yi)}n

i=1 are Lipschitz continuous and ρ(F̂θ) is β-smooth in θ, when
η = 1

β
√

T
, θt converges to a stationary point.

Experiment: Risk Assessment

Setup. We perform risk assessments on pretrained Pytorch models for ImageNet classification.
These models share similar accuracy (around 69% ) on the validation set (Table 1).

VGG-11 GoogLeNet ShuffleNet Inception ResNet-18
Accuracy 69.022% 69.772% 69.356% 69.542% 69.756%
E[ℓf ] 1.261 1.283 1.360 1.829 1.247

CVaR.05(ℓf) 1.327 1.350 1.431 1.925 1.313
E[ℓf ] + 0.5Var(ℓf) 5.215 4.376 6.718 14.416 5.353

Table: Risks for different ImageNet classification models evaluated on the validation set. ℓf(Z) is the cross-entropy
loss for each model f . For simplicity, we omitted the arguments Z in the table. CVaRα is the expected value of the
top 100α percent losses. All results are rounded to 3 digits.

Experiment: Empirical Distortion Risk Minimization

Toy Example The blue pluses and orange dots represent two classes, respectively. We have
learned logistic regression models to minimize the expected loss and the CVaR.05 (expected value
of the top 5% losses) through minimizing their empirical risks. The model learned under expected
loss suffers high loss for a small subset of the covariates while the model learned under CVaR.05
have all losses concentrated around a small value. Indicated by the (uniform) grey color in the
contour plot, the predictions (predicted probability of a covariate being labeled as 1) for the
CVaR.05 model are around 0.5. In contrast, the predictions for the expected loss model spread
across a wide range between 0 and 1.
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Figure: Prediction (predicted probability of a covariate being labeled as 1) contours and loss histograms of two models
learned under the expected loss and the CVaR.05 objective, respectively. The blue pluses and orange dots represent two
classes. The loss distribution for the expected loss model has extremely high values for a small subset of the covariates.

CIFAR-10 We have trained VGG-16 models on CIFAR-10 through minimizing the empirical
risks for expected loss, CVaR.05, CVaR.7 and HRM.3,.4. In general, the objective values are
decreasing over the epochs during training and testing. In addition, we observe that minimizing
the empirical risk for expected loss does not necessarily imply minimizing other risks, e.g., CVaR.05
(Figure 3(a)), suggesting the efficacy of our proposed optimization procedure for minimizing
distortion risks.
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(a) Training objective values

0 20 40 60 80 100 120 140
Epoch

1

2

3

4

5 Expected value
CVaR0.05
CVaR0.7
HRM. 3, . 4

(b) Testing objective values
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(c) Training risk evaluations
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(d) Testing risk evaluations
Figure: Performance of VGG-16 models trained under expected loss, CVaR.05, CVaR.7 and HRM.3,.4. In Figures 3(a)
and 3(b), each model is trained and evaluated on the same objective. In Figures 3(c) and 3(d), we only train one
model under the expected loss but report all four objectives of that model.
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