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Research Summary

The key question my research studies is, “how can we use societal resources to
do the most good”? These “resources” could be concrete, like doctors, or abstract,
like data, and the objective of “good” could be concepts like fairness, privacy, or uti-
lization (helping as many people as possible). For example, some of my past work
has analyzed cases with limited resource allocation, studying the extent to which
fairness may be achievable alongside other goals, such as utilization or stability of
certain arrangements. In other papers, I model data as a resource, analyzing feder-
ated learning through the lens of cooperative game theory to explore the relationship
between stability, optimality, and fairness of federating structures. Finally, in ongoing
work, I view human time as a resource, modeling how human and AI collaboration
can show when complementary performance may be achievable.

How can we allocate resources to as many
people as possible while ensuring fairness in

access?

Figure 1: A stretch of coastline prone to unpre-
dictable storms, causing levels of need in varying
magnitude across towns.

Figure 2: An example of distributions of need over
the two towns. Note that need in Town 2 is larger
and rarer than need in Town 1.

In [4] (which won Best CS paper at FAccT 2020), I study questions of how to allocate
resources across multiple locations with stochastic levels of need. A community may
wish to optimize for utilization (helping more people) or for fairness (equal probability
of being helped). I analyze when these two goals might be in tension with each
other- and when they can both be simultaneously achieved.
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How can we help agents with differing access to
data build models collaboratively?

Figure 3: Agents of varying size (amount of data) federating in three coalitions. In federated learning,
agents build a model with other agents, combining model parameters learned on their local data. For
local learning, agents build a model based only on their local data.

In [5], I analyze federated learning, a distributed learning paradigm where agents
combine models from local data to create a global model. If agents draw data from
different distributions, however, the federated learning model may be biased and be
sub-optimal for each agent. I use a lens of cooperative game theory to analyze which
federating structures will be stable - where no agent wishes to move from its current
federating coalition to another coalition (that would accept it).

... and how can we ensure such collaborative
model-building is fair and societally optimal?

Coalition C errs(C) errl(C)
errs({ns,n`})
errl({ns,n`})

2 · c + 1
n`
ns

errw(C)

{{ns}, {n`}} 1.67 0.5 3.33 5 3.33 20
{ns, n`} 1.57 0.49 3.20 5 3.33 19.23

Table 1: Example of two-player game with ns = 6, n` = 20, with parameters µe = 10, σ2 = 1. Note
that in this case, federating in the grand coalition {ns, n`} is individually stable (and thus optimal, for
weighted error). The grand coalition satisfies egalitarian fairness (2 · c + 1 bound) and proportional
fairness.

Coalition C errs(C) errl(C)
errs({ns,n`})
errl({ns,n`})

2 · c + 1
n`
ns

errw(C)

{{ns}, {n`}} 1.67 0.250 6.68 9 6.67 20
{ns, n`} 1.73 0.251 6.89 9 6.67 20.43

Table 2: Example of two-player game with ns = 6, n` = 40, with parameters µe = 10, σ2 = 1. Here,
the grand coalition fails to be stable, so local learning minimizes weighted error. The grand coalition
satisfies egalitarian fairness (2 · c + 1 bound) but does not satisfy proportional fairness.
In follow-on work, I analyze the fairness and optimality of federating coalitions. In [6], I
consider two competing notions of fairness in federated learning: egalitarian fairness
(which aims to bound how dissimilar error rates can be) and proportional fairness
(which aims to reward players for contributing more data). For egalitarian fairness,
we obtain a tight multiplicative bound on how widely error rates can diverge between
agents federating together. For proportional fairness, we show that sub-proportional
error (relative to the number of data points contributed) is guaranteed for any individ-
ually rational federating coalition.
In [7], I consider the relationship between a federating structure’s stability and its op-
timality (how low the overall average error is). After giving an efficient, constructive
algorithm for calculating an optimal arrangement, I show that optimal arrangements
are not always stable, but that the worst stable solution has a cost no more than 9
times that of an optimal arrangement.

How can we combine human and algorithmic
expertise to do better than either alone?

Figure 4: A model of human/AI collaboration: the performance of the combined system can be
viewed as a function of the performance of the algorithm and the (unaided) human.

Figure 5: A model of human/AI collaboration, for various examples of decision (combining) func-
tions.
In [2], I analyze systems where both human and algorithmic expertise are incor-
porated. For example, a doctor making a medical prediction may rely on her own
knowledge, as well as the prediction of an ML tool, in making a final decision. We
analyze theoretically factors that influence complementary performance (lower er-
ror than either the algorithm or unaided human alone). In ongoing work [3], I extend
this analysis to human-algorithm systems in multi-armed bandit settings.

How can we allocate cost across dissimilar
people in a way that is fair and incentivizes

everyone to participate?

Figure 6: Consider a case of car insurance, where each person is either low risk or high risk .
Total Alice’s cost Bob’s cost

Separate pools $35,741 $32.52 $38.96
Pooled:

even-split pricing $31,878 $31.88 $31.88

Pooled:
proportional pricing $31,878 $28.36 $35.40

Table 3: Example with insolvency-based premiums. Alice has low risk (2%) and Bob has higher risk
(2.5%)
In [1], I consider cost-sharing games where some players contribute more or less
to overall cost: for example, car insurance with drivers of different levels of true risk.
Two natural and competing notions of fairness might be to a) charge each individ-
ual the same price (solidarity) or b) charge each individual according to the cost
that they bring to the pool (actuarial fairness). However, in many natural settings,
cost-sharing games exhibit externalities of size, where larger groups are cheaper
per person (all else being equal). We explore how this complicates traditional un-
derstandings of fairness, drawing on literature in cooperative game theory.
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