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ABSTRACT
Existing efforts to formulate computational definitions of fairness

have largely focused on distributional notions of equality, defined

through how resources or decisions are divided. Yet existing dis-

crimination is often the result of unequal social relations, rather

than simply an unequal distribution of resources. We show how

optimizing for existing computational definitions of fairness fails

to prevent unequal social relations by providing an example of a

self-confirming equilibrium in a simple hiring market that is re-

lationally unequal but satisfies existing distributional notions of

fairness. We introduce a notion of blatant relational unfairness for

complete-information games, and discuss how this definition helps

initiate a new approach to incorporating relational equality into

computational systems.
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1 INTRODUCTION
Scholars, designers, and engineers continue to be confronted with a

thorny challenge: how to approach the development of technologies

like machine learning in practice in ways that account for social

norms, ethics, and human values [32, 47, 56, 73]. Recent scholarship

has described some of the methodological and practical challenges

[12, 32, 44, 49, 69] in deploying tools and techniques attempting to

encode values like fairness to ameliorate social inequality and in-

justice [11, 29, 70]. Moreover, the turn to computational definitions

of values like fairness as mechanisms to solve problems of social

injustice presents problems in itself [2, 36, 44, 61, 69]. Algorithms

and their makers often do not just ignore, but at times exacerbate

the material conditions under which inequality flourishes [32, 44].

For instance, algorithms often lack what we have elsewhere termed

value legibility [35], the degree to which broader contexts or social
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processes that are known to have normative impacts are left out of

a model’s design, and/or are unaccounted for in its deployment.

One core feature of these ongoing debates involves the narrow

understanding of fairness, a central value in the field, as a concept.

The vast majority of extant fairness models as applied to real-world

problems are grounded in a constrained set of philosophical defini-

tions of what fairness is, and what it is for [14, 42]. These definitions

center on what egalitarian philosophers term distributional equality,
or howmaterial goods ought to be allocated fairly. Yet these theories

are poor mechanisms for understanding how to promote equality

of social relations between human beings and the elimination of

social hierarchies of status and power [7]: this latter kind of fairness,

known as relational equality, is largely missing from conversations

around algorithmic fairness as a guiding ethical theory.

To improve the design of computational systems, including for

progressive social ends, we need to be able to compare strategies

for decision-making along the axis of relational equality. Relational

equality cannot be accomplished through formal modeling alone

[35], but developing computational mechanisms for representing

this form of fairness is a necessary though insufficient condition of

relational equality’s broader project. Here, we show how existing

computational and economic definitions of fairness and discrim-

ination fail to capture relational (in-)equality via a simple game-

theoretic model of a hiring market. Hiring markets and algorithmic

hiring are a ripe venue for concerns of discrimination [16, 64], but

have long been a focus for understanding discrimination, particu-

larly statistical discrimination [8, 33, 63].

We provide self-confirming equilibria in this hiring market where

a firm will treat a candidate poorly (by only offering them low

wages) if the firm believes other firms will also treat the candidate

poorly. We claim that these equilibria are discriminatory and define

them as blatantly relationally unfair. Doing so allows us to over-

come the difficulties of translating relational equality into a formal

definition: while relational equality may be a well-formed ethical

theory, it is not particularly amenable to computational formal-

ization. We then show how satisfying existing computational and

economic definitions of fairness fails to prevent these equilibria,

and thus fails to prevent relational inequality, without having to for-

mally define relational fairness—merely a form of blatant relational

unfairness.
1
In particular, we demonstrate this discrimination in

our model hiring market is neither taste-based nor statistical: the

1
This approach also has the benefit that we need not believe that relational equality

should be an ethical end to conclude that existing definitions of fairness are insufficient:

all we need to believe is that this particular situation in this hiring market is in some

way unfair or unjust. This contrasts with much previous work where the definition of

computational fairness used is never justified but simply declared as axiomatic.
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firm need not hold any personal animus against the candidate, and

the candidate may not be any less qualified or skilled than other

candidates treated more advantageously, even at equilibrium. We

also show this type of equilibrium is not prevented by enforcing

extant computational definitions of fairness: neither by enforcing

forms of group fairness, like equalized odds [40] or statistical parity

[51], nor individual notions of fairness [28], nor even causal notions

of fairness [55].

While the equilibria that result in this kind of discrimination are

relatively easy to find, to the best of our knowledge the implica-

tions of such self-confirming equilibria for the formal treatment of

inequality have not been made clear prior to this work, nor recog-

nized as a distinct form of discrimination. These implications are

significant. That existing computational definitions of fairness fail

to prevent the relational inequality we demonstrate implies a need

for novel treatments of discrimination and unfairness which cen-

ter relational equality, rather than focusing only on distributional

equality. We initiate this work by providing a formal definition of

blatant unfairness in complete-information games. This definition

helps us formalize the most egregious kinds of relational inequality,

while still capturing the close connection between distributional

inequality and relational inequality. Given the ubiquity of unequal

social hierarchies not only in situations of material redistribution

(such as hiring markets) but also more broadly across all kinds of

social relations, our formal definition of blatant unfairness seeks

to start making legible a wider array of forms of unfairness than

existing computational solutions. Complete-information games are

simple enough to largely ignore the most thorny issues of relation-

ships – players already agree on their payoffs and the rules of the

game – and thus represent a convenient starting point for the study

of computational relational equality.

We first provide background on theories of relational equality,

extant computational definitions of fairness, and statistical discrim-

ination and game theory (Section 2). We then introduce our model

of a hiring market and our definition of blatant unfairness, ground-

ing this definition in theories of relational equality, and show how

existing definitions fail to prevent blatant unfairness (Section 3). We

conclude with a short discussion for future directions for this work

(Section 4). We also include in the appendix all proofs, a discussion

of previous criticisms of computational definitions of fairness, in-

cluding criticisms via relational equality, and an extension of our

work to games of more than two players.

2 DEFINING ALGORITHMIC FAIRNESS
2.1 Group Fairness
Statistical notions of fairness based around distributional equality

are central to current debates around discrimination and inequality

in machine learning. Many of the most popular such notions are

those that fall under the penumbra of what we refer to as group
fairness. In contrast to relational equality, these computational mod-

els of fairness center around a particular understanding of how to

distribute material resources between groups known as equality

of opportunity (EOP). As Heidari et al. [42] have noted, notions of

group fairness parallel extant variations of EOP from political phi-

losophy. In machine learning, group fairness metrics are typically

defined for supervised learning settings using a sensitive feature

of the data to be analyzed. Here, we consider a feature space X
where each individual has feature values x ∈ X , and a sensitive
feature a ∈ A, which represents a demographic feature that we

are concerned people should not be held responsible for, such as

a race or gender. Each individual also has a target label y ∈ Y ;
the goal is to construct a classifier д : X → D for some decision

space D ⊂ R. When otherwise unclear, we use A(x) to denote the

sensitive attribute of individual x and Y (x) the label of x . We now

introduce a notion of exact group fairness that generalizes many

of the well-established types of group fairness metrics. As in typi-

cal supervised machine learning, group fairness metrics assume a

distribution over individuals; for the definition of group fairness

we will abuse notation and also use X to denote a random variable

over individuals, and similarly with Y and A.

Definition 2.1. A classifier д : X → D satisfies exact (F1, F2)-
group fairness with respect to a sensitive attribute A for measurable
functions F1 and F2 if

F1(д(X ),Y ) ⊥ A | F2(д(X ),Y ).

Group fairness parameterizes a wide variety of popular def-

initions based on equalizing statistics from a confusion matrix.

For example, if F1(д(x),Y (x)) = д(x) and F2 is any constant, then

(F1, F2)-group fairness is statistical parity:

Definition 2.2 (Kamiran and Calders [51], Dwork et al.

[28]). A classifier д : X → R satisfies statistical parity if, given a
distribution over X and a sensitive attribute A,

P[д(x) ≥ z |A = a] = P[д(x) ≥ z]

for all a ∈ A and z ∈ R.

Group fairness also includes other popular definitions, like equal-
ized odds [40], where F1(д(x),Y (x)) = д(x) and F2(д(x),Y (x)) =
Y (x). While group fairness definitions have become increasingly

popular in the computational literature [11, 27, 70], scholars have

posited several criticisms of these definitions, ranging from an

overly narrow conceptualization of disadvantage [44] to how they

fail to treat similarly “risky” people similarly [19]. In response to

these perceived failures, several alternative definitions have been

proposed.

2.2 Individual and Causal Fairness
Group fairness also fails to prevent discrimination against individ-

uals, provoking Dwork et al. [28] to introduce individual fairness.

Definition 2.3 (Dwork et al. [28]). A classifierд : X → D satis-
fies (M,m)-individual fairness if for every x ,y ∈ X ,M(д(x),д(y)) ≤
m(x ,y), whereM is a statistical distance (we assumeM(д(x),д(x)) =
0) andm is a metric.

Group fairness attempts to ensure equality across people under

the intuition that people with one value of a sensitive feature are

as deserving as people with another value of a sensitive feature.

But changing the sensitive feature may change other features of an

individual, which requires examining counterfactuals. This reality

has prompted increased attention to causal fairness. We focus on

the strongest notion of causal fairness in the literature; if satisfying

this notion of causal fairness still appears relationally unfair, then

so will satisfying weaker variants. This notion is also an individual
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notion of fairness, like Dworkian individual fairness, but instead of

comparing individuals to each other, causal fairness compares an

individual to the counterfactual where they had a different value of

the sensitive attribute.

Definition 2.4 (Kusner et al. [55]). A classifier д : X → D is
individually counterfactually fair with respect to a causal graph if

P[д(x ,a) = d |X = x ,A = a] = P[д(x ,a′) = d |X = x ,A = a]

for all x ∈ X , a,a′ ∈ A, and d ∈ D.

For an introduction to causal models and graphs, see Pearl [62].

2.3 Statistical discrimination, markets, and
equilibria

In this work, we are primarily concerned with classifiers being

played as strategies in games, and in particular, games featuring

surpluses generated between a firm and a candidate for a job. We

now introduce some necessary basics from game theory, along

with the relevant existing notions of fairness from the economics

literature. In games, and in games representing hiring markets

in particular, the economics literature focuses on discrimination

arising not just from prediction error, as in group and individual

fairness, but from behavioral biases. The two most common forms

of this are taste-based discrimination and statistical discrimination.

Under taste-based discrimination, discriminatory outcomes are

produced by the direct animus of an individual or group. Setting

aside the difficulties in making causal models, animus does not

need mediation by other factors to link a sensitive feature to an

outcome. So even if it is hard to formally define “direct animus”,

we can avoid this issue by saying that at the very least, if we are

given a causal graph and there’s no edge from A to D, there can be

no taste-based discrimination:

Definition 2.5. A classifier д : X → D exhibits no taste-based
discrimination with respect to a sensitive feature A in a causal graph
if there is no directed edge from A to D.

Group-level disparity can have other sources, however. Statistical
discrimination is when disparate group outcomes result from the

actions of utility-maximizing agents that use observable charac-

teristics of the groups to infer outcome-relevant characteristics of

individuals, first described by Arrow [8] and Phelps [63]. Disparate

outcomes under statistical discrimination, are often, though not

always, the result of informational frictions, like an unobserved

skill level of workers [33]. If a firm observes group membership,

and group membership is correlated to skill level, then the firm will

use group membership as a proxy to hire workers, thereby disin-

centivizing workers of one group to invest in skills at equilibrium

which in turn creates the correlation between group membership

and skill level.

Crucially, in models of statistical discrimination, the decision

maker claims to be “justified” in their use of group membership,

defined by some sensitive feature A, in the sense that there is a

real difference, at equilibrium, between the groups: one group will

on average perform worse than the other, and thus generate less

surplus, i.e. the total benefits reaped from the decision maker hir-

ing the workers. Statistical discrimination externalizes the reasons

for differences between groups, such as historical and/or ongoing

discrimination and animus.

Here we use the amount of surplus generated as the skill level.

If the firm believes one group will on average generate less surplus

than the other, then given a noisy estimate of the surplus of a worker

from that group, the firm will use a higher threshold on the noisy

estimate to hire them than for the other group. Different thresholds

mean the worker with the least surplus hired will be different across
group membership. Using this difference of marginal productivity

as a definition of bias is the so-called Becker test [21]. Regardless

of whether the firm fails the Becker test or not, though, statistical

discrimination is when there is a true average difference of surplus

across A, and the firm uses A to take advantage of this, creating

different outcomes across A. At the very least, then:

Definition 2.6. A classifier played by a decision maker f exhibits
no statistical discriminationwith respect to a sensitive featureA if the
average surplus generated between the decision maker and a player
is the same across all groups defined by A at equilibrium.

That the decision maker needs to generalize using the sensitive

feature to maximize utility may make it difficult to argue that sta-

tistical discrimination is always undesirable or unfair – if statistical

discrimination is always wrong, then it would preclude all kinds

of generalization, even against innocuous features (say, being a

smoker, for public health reasons) [14]. However, personalization

may also entail implicit judgements regarding moral desert, creat-

ing the kinds of paternalistic intervention Anderson’s relational

equality wishes to avoid. Regardless, this kind of criticism of sta-

tistical discrimination does not preclude a definition of unfairness

based on the Becker test, which could include some subset of the

combination of taste-based and statistical discrimination. In con-

trast, we will claim in this work that there are blatantly unfair

situations that passes the Becker test where the discrimination at

issue is neither taste-based nor statistical. Besides taste-based and

statistical, there have been other approaches including network-

based discrimination [9], though these also largely feature true

productivity differences between groups or individuals (though, see

[34]).

In order to find situations that are unfair, yet display no sta-

tistical or taste-based discrimination and would pass the Becker

test requires situations in which a firm believes in some kind of

difference across groups, even when there isn’t any. This requires

introducing a solution concept where beliefs are not always cor-

rect, which means we can’t use Nash equilibria. Here we consider

extensive-form games with perfect recall and complete information,

where the rules of the game and the payoffs are common knowl-

edge, and players remember the actions they play. We rephrase the

definition of a Nash equilibrium to see how it is the result of players

maximizing utility according to their beliefs, such that their beliefs

are always correct by. To do so, we introduce notation and recall

necessary basics from game theory.

We will denote s as a pure strategy profile, so si is a pure strategy
for player i , which maps each node in the extensive-form game

to an action, and π as a mixed strategy profile, meaning πi is a
distribution over the possible pure strategies for player i . Recall that
an information seth ∈ H in an extensive-form game is a partition of

the non-terminal nodes. Call Hi the information sets where player
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i has the move (so H−i is the remaining information sets) and H (π )
to be the set of information sets that can be reached under mixed

strategy profile π with positive probability. Since we only consider

games with perfect recall, every mixed strategy has an equivalent

behavior strategy with an identical distribution over outcomes.

Recall a behavior strategy for player i maps each information set

where i plays to a distribution over actions. We will use σ to refer to

a behavior strategy profile, so that σi is the behavior strategy for i ,
σ−i is the remaining behavior strategies, and σi (hi ) is a distribution
over actions at information set hi ∈ Hi . Since any mixed strategy

has an equivalent behavior strategy, given a mixed strategy πi , we
can denote π̂i as the equivalent behavior strategy induced by πi . A
player’s belief should represent i’s conception of the other player’s

strategies, so we define a belief µi to be a distribution over profiles

of behavior strategies for each of i’s opponents. These behavior
strategies need not a priori be strategies actually played by anyone.

Finally, let ui be the utility function for player i and let ui (si , µi )
be the expected utility for player i if i plays pure strategy si and
the remaining players play a random strategy drawn from belief µi .
As a warmup, with this notation, a Nash equilibrium is a strategy

where each player maximizes their utility according to their beliefs,

such that their beliefs about what their opponents will play are

correct with probability 1.

Definition 2.7 (see Fudenberg and Levine [37]). A strategy
profile π is a Nash equilibrium if for each player i and and each
strategy si with πi (si ) > 0, there are beliefs µi such that

• si maximizes ui (·, µi ) and
• Pσ−i∼µi [σj (hj ) = π̂j (hj )] = 1 for all j , i and hj ∈ H−i .

The second constraint, which must hold over all hj ∈ H−i ,

ensures that µi is always correct. In this work, we employ self-

confirming equilibria, where each player i’s beliefs need not be

correct at all of their opponent’s information sets, merely the infor-

mation sets H (si ,π−i ) that actually happen at equilibrium; players

may be arbitrarily wrong about strategies on off-equilibrium paths.

Definition 2.8 (Fudenberg and Levine [37]). A strategy profile
π is a self-confirming equilibrium (SCE) if for each player i and and
each strategy si with πi (si ) > 0, there are beliefs µi such that

• si maximizes ui (·, µi ) and
• Pσ−i∼µi [σj (hj ) = π̂j (hj )] = 1 for all j , i and hj ∈ H (si ,π−i ).

This definition allows the beliefs to vary depending on the strat-

egy si , which makes sense when a single “player” consists of a

distribution over different agents with different beliefs but the

same utility function, each playing a pure strategy. A unitary self-

confirming equilibrium is when the belief µi can only depend on

the player and not si . In this work, all self-confirming equilibria

will be unitary, but because this difference is not important for us,

we will not discuss it further.

3 THE JOB MARKET AND BLATANT
UNFAIRNESS IN TWO-PLAYER GAMES

3.1 An example
Interrogating social inequality in the workplace is central to An-

derson’s notion of relational equality [6]. As such, we begin by

introducing a central example focused on hiring, which will help

us define blatant unfairness formally, and show that our notion is

incompatible, a la Chouldechova et al. [17] and Kleinberg et al. [53],

with existing computational definitions of fairness. This example

also serves as a thought experiment, in the philosophical sense, to

build our moral intuition as a way to motivate an alternative ethi-

cal, philosophical, and mathematical approach to those approaches

used by extant mathematical definitions of fairness. In this example,

an individual is applying for a job at a firm, in a market sufficiently

large and important that there is no realistic alternative for the

individual to seek other markets or other alternatives. Consider

the scenario – scenario A – where the firm and the job candidate

believe the job candidate has few options to work elsewhere in this

market, or only at lower wages. The firm is thus highly incentivized

neither to make the job easy to get nor offer the candidate high

wages. Yet even when it is challenging for the job candidate to get

the job, they will try anyway; and if they are offered low wages,

they will accept it. Moreover, the firm will indeed offer low wages,

as they acquire a worker without having to pay them a premium.

Now consider an alternative scenario – scenario B – also featuring
a candidate for the same job. (The nature of this alternative does

not matter much right now as a matter of normative relevance: it

may be a counterfactual, or simply occur at a different time or place,

or even consist of a different firm under the same incentives.) In

this scenario, the candidate is exactly as qualified for the position

as the candidate in the previous scenario, but now both the firm

and this candidate believe that this candidate has many options to

work elsewhere. Now the firm is incentivized to offer the candidate

a job quickly, and with higher wages. Neither of these scenarios are

meant to be exact depictions of realistic hiring markets. It would

be extremely difficult to find a natural experiment in which the

only difference is in the players’ beliefs, for example. Rather, these

examples are meant as a thought experiment to demonstrate a

particular example of an unequal social relationship, which is an

important feature of Andersonian democratic inequality.

The social relationship at question is between the firm and the

job candidate, enacted via the actions firm and candidate take while

bargaining over wages: the firm, what wage to offer, if any, and

the candidate, what wages they’re willing to accept. These actions

affect both the firm and the candidate and are shaped by their

beliefs about each other. Yet this relationship is not an equal one.

A candidate stuck in scenario A will always have a difficult time

getting a job in this market: this candidate is treated as “lesser than”

the candidate benefitting from scenario B, even if the firm knows

that they would both still benefit by moving to scenario B. The

candidate from scenario A is never treated as worthwhile by the

firm, even when “worth” is defined narrowly as the worth of the

candidate to the firm. Nor is it the candidate’s fault in scenario A; the

candidate in scenario A did not differ from the candidate in scenario

B in any meaningful way. It is the case that if the candidate’s belief

is not true that they have few options, they should instead simply

change their beliefs. But because the candidate from scenario A

doesn’t believe that they will get a job elsewhere, the candidate

always accepts the bad offer from the firm and never explores their

outside options or updates their priors.

Worse, the scenario above can involve a self-fulfilling prophecy

of another kind. Even if the unfortunate candidate is wrong in their

priors initially, they will soon be proven right in their beliefs if
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they always face scenario A. If each and every firm believes this

unfortunate candidate has no outside option, then the entire market

will treat the candidate in one way, and the belief of the market

will become reality: the unfortunate truly will not have an outside

option. If everyone believes it, it becomes true. And if this hiring

market is sufficiently large, or firms’ beliefs are uniform across

different hiring markets (motivating an inelastic demand for jobs),

the ability to move to a different hiring market may not exist at all,

or be impractical even if it does in theory. This scenario makes it

hard to argue that the candidate from scenario A doesn’t deserve or

need a job in this particular market, and should find employment

elsewhere.

Thus, we can conclude that scenario A is an example of a lack

of social standing, and that under Anderson’s democratic equality,

this is a blatantly relationally unfair outcome. Admittedly, there is

no “hard evidence” that this relationship is unfair, nor can there be.

Instead, this sense of unfairness can come to us as either a partic-

ular interpretation of Andersonian relational equality or simply a

moral intuition that it is intolerable when individuals are treated

as “lesser than”. In more realistic settings, this social relationship

extends well beyond the single point of bargaining which we focus

on here, extending both before to their relationship in the market

and after to their relationship as employer and employee. Like-

wise, Andersonian relational equality also extends well beyond

this point, by considering how democratically enabled decisions,

individual dignity, etc., enable relational equality on a much wider

scale. However, this simplified relationship consisting of bargain-

ing over wages is still sufficient to find an example, summarized in

scenario A, of unequal social standing, even if it is not sufficient

to characterize the full scope of relational equality. This will allow

us to create a concrete model of blatant relational inequality by

modeling these scenarios as simple games.

3.2 The market
We consider a non-repeated Nash bargaining game with two play-

ers, the firm and the candidate, splitting a unit surplus, plus a third

player, the market, who provides the disagreement point, i.e. an out-

side option. The surplus represents the total benefits reaped from

the candidate working the job the firm is offering. We represent

each candidate as a vector x ∈ X , and denote the firm by f . We

assume that the feature vector uniquely identifies the candidate,

so the game remains a complete-information one. Both players

have need: the firm needs to fill the job and the candidate needs

a job, or else suffers a negative utility. For simplicity, we set this

negative utility for each of them as −1, and since they produce unit

surplus together, the firm’s action is to make an offer πf ∈ [0, 3],

representing their wages: salary, benefits, etc. Then the candidate

just chooses whether to accept or reject this offer. If the candidate

accepts, the firm receives 2 − πf utility and the candidate receives

πf − 1. For example, πf = 1 represents the break-even point for

the candidate and πf = 3/2 represents an even split of the sur-

plus. If the candidate rejects, the market playerm takes an action

(o(f ),o(x)) ∈ [0, 3]2, and the firm receives its outside option 2−o(f )
and the candidate receives its outside option o(x) − 1. Given that in

practice the market playerm isn’t a single agent, but rather itself

is the result of another, possibly equilibrium, outcome, we do not

explicitly assign payoffs to this player. Thinking ofm as the “Na-

ture” player, the market plays a fixed strategy. We denote this game

Mx,f . We let the firm f use a classifier д : X → ∆([0, 3]) mapping

candidates to probability distributions over offers to decide on a

strategy πf = д(x). We use πf and д(x) interchangeably for this

reason. In this work, we do not consider what the features are, or

even how the classifier is learned. Thus д represents the strategy

of f for a collection of games, each gameMx,f parameterized by x .
If д(x) is an action played at equilibrium in every game, we call the

classifier д an equilibrium strategy.

There are infinitely many Nash equilibria inMx,f . For example,

there is an equilibrium where the firm offers д(x) = o(f ) = o(x).
(We give a slight generalization of this fact in Proposition 3.2.)

Here, the firm offers market-rate wages, and leaves the candidate

indifferent to whether or not to accept the offer. However, simply

the fact of many equilibria doesn’t fully capture scenarios A and B.
While there are equilibria that features both low and high values of

πf , this requires the market play different values o(x) depending
on the player. We don’t want to assume this will happen a priori,

because the surplus for each candidate is identical. Scenarios A

and B wouldn’t occur simultaneously in the same market. Nash

equilibria also do not take advantage of the impact of the players’

beliefs.

Before turning to SCE, we will want simpler notation for a

player’s beliefs about what the outside options o(f ) and o(x) are.
We will use oi (j) to denote what i believes j’s expected outside op-

tion is under a given belief µi . More formally, recall that a belief µi
for any player i is a distribution over behavior strategies for each

opponent. In our case, beliefs will not correlatem’s strategy with

any other strategies, and moreover,m only plays at one information

set, so abusing notation slightly, we can call µi (m) i’s belief about
whatm will play, i.e. a distribution over outside options o ∈ [0, 3]2

indexed by f and x . Then let oi (j) = Eo∼µi (m)[o(j)], i’s belief about
j’s expected outside option, i, j ∈ X ∪ { f }.

3.3 Blatant unfairness in the market
Particular SCE inMx,f will turn out to exactly be the unfair behav-

ior from Section 3.1, so our first order of business is finding them.

Not only will equilibria in these games form a concrete model for

the scenarios in Section 3.1 and therefore for relational unfairness,

but they will allow us to show a) this unfairness is not solely a func-

tion of a classifier, and therefore a definition of (un)fairness cannot

be defined only as a function of a classifier, as much previous work

does; and b) extract relevant features of the undesirable behavior to

come to a concrete definition of relational unfairness. Importantly,

we can find SCE where ox (f ) and of (f ) are not only not equal to

o(f ), they can be arbitrarily far apart from o(f ) (and likewise ox (x)
and of (x) can be arbitrarily far from o(x)): the player’s beliefs about
their outside options are nowhere close to their true outside options.

This happens when the candidate accepts the firm’s offer because

the candidate believes their outside option is no higher than the

firm’s offer, and then neither of them will find out what the mar-

ket would have done. Moreover, the firm’s offer may be arbitrarily

low, as long as the firm believes they won’t get any more from the

market. Since the market’s action is now off the equilibrium path,
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neither the firm nor candidate need be correct about the market’s

strategy, justifying their beliefs.

Proposition 3.1. If beliefs satisfy of (f ) ≥ of (x) and of (x) ≥

ox (x), the strategy profile where, for all candidates x , the firm offers
д(x) = of (x) and the candidate accepts that offer (and acts arbitrarily
on other offers) is an SCE witnessed by those beliefs. Consequently,
for any pure strategy д : X → [0, 3] played by f , and any strategy
by the market player, there exists a set of beliefs where д is an SCE.

Before moving on, it should be noted there is another SCE where

the market never plays: If of (f ) < of (x) and of (f ) ≥ ox (x), then
the strategy profile where the firm plays д(x) = of (f ) and the

candidate accepts is an SCE. This SCE, however, is unrealistic in

the sense that a “rational” implication of the firm’s own beliefs is

the candidate shouldn’t accept the offer (because of (f ) < of (x))
but the firm also believes that they will accept the offer anyway

(since an SCE requires the firm’s beliefs to be true on information

sets that are reached).

When of (x) and ox (x) are small, then д(x) will be as well: this
is scenario A. The firm and the job candidate both believe the

candidate has a small outside option, and the candidate accepts the

low wages. When of (x) and ox (x) are large (and of (f ) and of (x)
even larger), then д(x)will be large: this is scenario B. Both are SCE

regardless of how large or small each candidate’s actual outside

option is. With these SCE in mind, we can observe what happened

in scenario A to make this outcome so undesirable. Scenario A
appears unfair to the candidate when д(x) is sufficiently small, say

д(x) < 1, and the candidate receives negative utility. The candidate

and the firm could have helped each other by splitting the surplus,

but didn’t. The firm takes all of the surplus and still leaves the

candidate with need. It was not a result of any inherent property

of the candidate, firm, or market conditions, since the outcome did

not depend on the outside options o(f ),o(x). There was no rational
strategy the candidate could play to change this situation, since it

is at equilibrium. There was an alternative equilibrium, scenario

B, where the the surplus split, meaning scenario A wasn’t the only

outcome, even for self-interested players. (We could also consider

the equilibrium where д(x) > 2 and the firm receives negative

utility, but we focus on д(x) < 1 since it is sometimes less clear if

the firm should even count as a moral agent, as it may not represent

an individual. It is also a symmetric situation, covered qualitatively

by our results).

It may be tempting to blame the firm for scenario A, as they failed

to offer the candidate any of the surplus. Yet to wholly blame the

firm is a result of a normative framework grounded in EOP, rather

than Andersonian relational equality. The existing distributional

notions of fairness grounded in EOP are, at least implicitly, blaming

the firm by making fairness a property of the classifier used by

the firm (and possibly the distribution over inputs to the classifier),

and constraining it so that undesirable behavior cannot occur. Such

models attempt to ensure that the candidates get the outcome they

“deserve.” Yet we now provide an SCE where the firm plays the

exact same classifier in the exact same game, but the outcome no

longer appears unfair at all (at least in the context of this game).

This not only makes it hard to place all of the blame on the firm,

but it implies that unfairness is not just a property of the classifier,

but of the entire market, including the players’ beliefs. In this SCE,

which is also Nash, the difference is entirely in the beliefs, which

are now correct about their outside options. Whereas before, the

rational candidate was forced into accepting an arbitrarily small

offer regardless of their true outside options, now when the firm

makes an offer below the candidate’s outside option, the candidate

rejects the offer and they both get market rates.

Proposition 3.2. For any pure strategy д : X → [0, 3] played by
f , if beliefs satisfy o(f ) = of (f ) = ox (f ) ≤ o(x) = of (x) = ox (x),
the strategy profile where the firm offers д(x) ≤ o(f ) and x accepts if
and only if д(x) ≥ o(x) is an SCE and a Nash equilibrium witnessed
by those beliefs.

Suppose we are given a classifier where д(x) ≤ o(f ) < o(x) for
all candidates, andд(x) is sufficiently smaller than o(x), sayд(x) < 1

but o(x) is at least 3/2. This is at equilibrium under Proposition 3.1,

and in this SCE the candidate getsд(x) and therefore negative utility,
resulting in scenario A and what appears to be a blatantly unfair

outcome for the candidate. This same classifier is also at equilibrium

under Proposition 3.2, but now the candidate gets the much larger

o(x), which is more similar to scenario B. It’s not necessarily clear if

we should consider this equilibrium fair – perhaps receiving market

rates is undesirable as well – but at least solely in the context of this

game, there’s no reason to call it unfair. The classifier is the same

but the normative implications are wildly different, implying no

definition of fairness can distinguish between these two scenarios

using only the classifier. This is a significant issue because the

existing computational definitions of fairness, discussed in Section

2, are defined as a function of the classifier.

It might be possible to attempt to adopt computational or eco-

nomic definitions to this setting in an attempt to circumvent this

outcome. It might be possible to label the classifier as unfair in

both equilibria using some version of an existing definition, for

example. However, in Section 3.4, we will provide evidence that

existing fairness definitions will label classifiers employed in unfair

equilibria as fair, ruling out existing definitions and making small

tweaks to existing definitions unlikely to be effective. Moreover,

these definitions will do this not just for this particular game, but

for a wide class of games. To do so, we need to introduce a formal

definition of blatant unfairness for equilibria. We do not attempt to

define fairness here, simply blatant unfairness, similarly to the way

that Dinur and Nissim [25] did not define privacy, simply blatant

non-privacy. Our definition, for any equilibrium in a two-player

complete-information game, says that the equilibrium is blatantly

unfair when it has the same features as scenario A did, which we

had already decided was blatantly relationally unfair: in scenario A,

there was a player x who did not get positive utility at equilibrium,

and yet there was another equilibrium where both players received

positive utility. We do not insist on x having any particular features,

just as in scenario A the outcome did not depend on the surplus

generated or their outside options.

Definition 3.3. An equilibrium π is blatantly unfair with respect
to x in a two-player complete-information game with players x and y
if the payoff for x under π is non-positive, but there is an equilibrium
where both x and y receive positive payoffs.

The equilibrium π where x receives non-positive payoff is sce-

nario A, whereas the alternative equilibrium where both players



It’s Not Fairness, and It’s Not Fair EAAMO ’22, October 6–9, 2022, Arlington, VA, USA

receive positive playoffs is scenario B. If this definition is to be

successful, it must not only capture the blatantly relationally unfair

equilibria we already described, but at least some of the larger aims

of Andersonian relational equality, and here, we focus on capturing

one form of unequal standing in a social relationship. As such, the

game in this definition represents the social relationship between

players x and y: the outcomes of the game determine how each

player’s actions and beliefs affect the other player. Under π , the
player y exerts sufficient pressure to ensure that any response by

player x results in a negative utility for x . This pressure is modeled

by the complete-information game itself, and since the game is

arbitrary, this is sufficiently general to capture both some direct

social pressure, like a threat, or something more indirect, like they

both believe x suffers from racial discrimination. Either way, the

pressure results from the relationship itself, as brought about by

the actions they play, rather than any outside forces, as there is

an alternative equilibrium where they both cooperate with each

other and both receive positive payoffs. We refer to this equilibrium

as blatantly relationally unfair because the payoff for x is not just

suboptimal, it is negative, and both players know it. We use the

term blatant unfairness, rather than blatant relational unfairness,
to highlight that this definition captures forms of distributional

inequality as well (as a function of payoffs). When referring to a

classifier д played at a blatantly unfair equilibrium, to indicate such

unfairness when that classifier is employed as a strategy in at least

one game, we will refer to the classifier itself as blatantly unfair,
simply for convenience.

Anderson’s critique of distributional equality motivates the fea-

tures of this definition. We insist on an absolute level of welfare

– utility must be positive if possible – in order to prevent neglect

of the social equality of workers. We insist on involving multiple

players to capture relationships rather than just outputs. We insist

on examining entire equilibria, rather than classifiers, to prevent

decision makers from claiming fairness in narrow settings while

manipulating who gets to opt in and who get to opt out of those

settings. And to avoid moral paternalism, we insist that establish-

ing blatant unfairness does not require justifying the moral deserts

of the candidates (or firms) by first establishing that they are suf-

ficiently qualified, or skillful, or possess any particular inherent

properties or attributes. This last insistence also has the beneficial

effect that our definition, unlike group fairness, does not necessar-

ily require gathering data about sensitive attributes, or force us

to define what is or should be a sensitive attribute. Nonetheless,

our definition of blatant unfairness should help protect minori-

tized populations from discriminatory outcomes, including racial

discrimination. Since racial discrimination may often be encoded

as beliefs about outside options, preventing blatant unfairness is

necessary for preventing racial discrimination in hiring markets

though it may not be sufficient for preventing racial discrimination

(depending on how the outcomes of the market affect other rela-

tionships outside of the market). Our focus in this work, though, is

expanding the domain where discrimination is evaluated from the

outcome of a single classifier to a much larger system: the market.

Our approach also attempts to encode the fact that “democratic

equality regards two people as equal when each accepts the obli-

gation to justify their actions by principles acceptable to the other,

and in which they take mutual consultation, reciprocation, and

recognition for granted.” [7] If two people accept this obligation,

they must find a principle by which actions may be acceptable to

the other. We attempt to define such a principle under this particu-

lar set of simplifying assumptions. Under π , player y has failed to

take actions which could ever be acceptable to x .
Since we care not just about the relative utility that the two

players get, but whether they receive negative payoffs, the utility

functions are absolute, in the sense that they cannot be arbitrarily

renormalized up to ordering of preferences over actions. Rather, to

define blatant unfairness, our assumption is that there is a space of

payoffs that are acceptable to a player, and that 1) all payoffs accept-

able to a player are larger than all payoffs that are unacceptable to

that player and 2) both players agree on what each other’s "accept-

able space" of payoffs is. These assumptions prevent us from using a

utility function that is everywhere non-negative, such as declaring

the payoff for the candidate to be the salary of the job, which is

always non-negative, without considering that they start with a

need for a job, and therefore negative utility. Any utility function

with an acceptable space of utilities can then be renormalized to

set the threshold between acceptable and non-acceptable utilities

to be zero, which is why we use this threshold for the definition of

blatant unfairness. Some additional assumptions along these lines

are necessary anyway in this setting, as Andersonian relational

equality requires finding a principle of action that is acceptable to

the other, thus at the very least necessitating each player to know

what is acceptable to themselves. Complete-information games are

thus a very natural starting place, because they already agree on

each other’s payoffs.

Implicitly, this definition is parameterized not only by the thresh-

old at which payoffs are no longer acceptable, but also the kind of

equilibrium, here SCEs. This places significant normative weight on

which kind of equilibrium we use as a solution concept. The choice

of which kind of equilibrium to use – should they be approximate

equilibria or exact? – could make big differences to which strategy

profiles are blatantly unfair. And small changes to a game could

erase or create equilibria, which would change whether a given

strategy profile is blatantly unfair or not. This appears to be an

unavoidable choice to have to make: the status of a relationship

depends not only on a person’s behavior now, but how another

person reacts to changes in that behavior. They suffer from low

standing in a relationship not necessarily because the other per-

son is causing them harm, but because that other person holds

attitudes about them that makes their inability to renegotiate the

relationship a consistent feature of that relationship. Here, SCEs

were chosen to better represent the effect of beliefs on action than

Nash equilibria or the like, which explains how payoffs can fail to

reflect the underlying qualifications of a candidate, but certainly

other choices should be investigated in the future.

Perhaps counterintuitively, our use of SCEs means it is some-

times blatantly unfair for the firm to have “correct” beliefs: if the

firm correctly believes the candidate’s outside option is low, then

the Nash equilibrium where they get market rates results in the

candidate getting negative utility. But there is an equilibrium where

both firm and candidate both receive positive utility, one where the

firm deludes itself into believing the candidate’s outside option is

high, gives it to them, which ensures the firm never observes the

market. Just because the former equilibrium was unfair, doesn’t
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mean we should move to the latter equilibrium: labeling an equilib-

rium blatantly unfair does not make the equilibrium where both

get positive payoffs fair. In this example, it might instead mean

changing underlying market conditions.

3.4 The failures of group fairness and other
definitions

In this section, we show that it is possible for a classifier to be

part of a blatantly unfair equilibrium, but simultaneously satisfy

group fairness and other well-known definitions of fairness. When

we interpret these other definitions as moral axioms, this is an

incompatibility result, showing that satisfying any one of these

definitions of fairness does not imply non-blatant unfairness. But if

we are convinced by the examples detailed above, then this result is

stronger: The examples enumerated in this result show why group

fairness and other definitions fail to prevent unfairness.

To do so, we consider a game Gx,f like before, but now the

structure of the game is arbitrary, except that f still plays a classifier
д as their strategy, eachд(x) their strategy forGx,f . We demonstrate

that as long as a blatantly unfair equilibrium π̃ exists in this game,

we can choose some player x0 to receive that strategy, i.e. д(x0) =
π̃f , so that д is blatantly unfair, and then extend д to the rest of the

players so that it is group fair, or individually fair, etc. Technically,

this is not a particularly difficult result: there is considerable leeway

to extend д, since the classifier is not constrained in any way on

the remaining players x ∈ X . Indeed, we may extend this result to

the setting where each player x can play in a game with different

structure and payoffs, but for notational simplicity we do not do so

here.

Proposition 3.4. Consider a two-player complete-information
game Gx,f with players x ∈ X and f , and f ’s pure strategies are
of the form д(x), where д : X → D, D ⊂ R. Suppose there exists a
blatantly unfair equilibrium π̃ in this game. Then:

(1) If D is finite or a real interval, and for all y and for all z in
the image F1(D,Y (X )) there exists a prediction d such that
F1(d,y) = z, then there is a strategy д for f that is (F1, F2)-
group fair and blatantly unfair.

(2) If π̃f is a pure strategy, |Y (X )| ≤ |F2(D,Y (X ))|, and for all y
and for all z in the image F2(D,Y (X )) there exists a prediction
d such that F2(d,y) = z, then then there is a strategy д for f
that is (F1, F2)-group fair and blatantly unfair.

(3) For allM,m, there is a strategyд for f that is (M,m)-individually
fair and blatantly unfair.

(4) Consider a causal graph which includes as nodes all of X as
well as a sensitive feature A and the output of the strategy, i.e.
D. Suppose A has out-degree 0. Then there is a strategy д for f
which, with respect to A, is individually causally fair, exhibits
no taste-based discrimination, and is blatantly unfair.

In addition to an incompatibility result, the strategies π that

evince this incompatibility are also examples that we believe demon-

strate some of the failures of these fairness definitions. Since bla-

tant unfairness is an individual-level definition, it is hopefully in-

tuitive why group fairness should not suffice to prevent blatant

unfairness. But there is another fundamental issue with group

fairness. For example, consider statistical parity, which requires

P[д(x) ≤ z |A = a] = P[д(x) ≤ z] for all a ∈ A and z ∈ D. Part (1)
implies that for any sensitive attribute A and distribution over X ,
there is a blatantly unfair strategy д that satisfies statistical parity.

We set д(x) to be the same for all x , namely the (possibly mixed)

strategy π̃f , the strategy for f guaranteed to be blatantly unfair

by assumption. Constant functions always satisfy statistical par-

ity, which only requires the same average treatment to all groups

defined by A. While we were driven to consider relational equal-

ity in part because group fairness risks paternalistic control and

ignoring social inequality, here we see that statistical parity is also

relationally unfair despite guaranteeing equality of outcome when

everybody is treated equally badly. This also holds for the rest of

group fairness and EOP, since these are also content to treat fairness

(or justice, or equality) as a comparison between people. For exam-

ple, while equalized odds (F1(d,Y (x)) = d and F2(d,Y (x)) = Y (x))
was introduced to correct perceived failures of statistical parity

[40], our concerns hold just as true for equalized odds. Even if we

ignore existing concerns about equalized odds, it is still a group-

level constraint that permits everybody, including those qualified,

to be treated badly, so long as it does so on average equally across

A, given those qualifications.

Part (1) of Proposition 3.4 covers a generalization to any group

fairness where F1 is surjective via its first coordinate, which includes
statistical parity, equalized odds, accuracy equality, etc. To show

this, we note that it suffices to use a strategywhich is not necessarily

a constant, but on every x , the distribution F1(д(x),Y (x)) is the
same.

While part (1) covers a wide range of group fairness definitions,

it does not include all popular group fairness definitions, most

notably sufficiency [11], also known as fair calibration [17], where

F1(d,Y (x)) = Y (x) and F2(d,Y (x)) = d . We cannot use a constant

function anymore, as it will not satisfy sufficiency except under

very narrow conditions on Y . The easiest way to ensure sufficiency

is if we instead assign a unique decision dy for every possible label

y ∈ Y (X ) (and in general, all we need is a distinct value of F2 for
every label, which requires π̃f to be pure to ensure uniqueness).

To some x0, we assign the decision д(x0) = π̃f , guaranteeing д is

blatantly unfair, and ensure that no other player x with a different

label from x0 receives that same decision. Between parts (1) and (2),

this result covers a very wide range of group fairness definitions.

This result is not true for all group fairness definitions, as there are

values of F1 and F2 for which no classifiers exist that satisfy (F1, F2)-
group fairness except under narrow conditions (e.g. F1(d,Y (x)) =
Y (x) and F2(d,Y (x)) is a constant), or for which no classifiers exist

that satisfy (F1, F2)-group fairness after fixing a value д(x0) (e.g.
F1(d,Y (x)) = d + Y (x) and F2(d,Y (x)) is a constant, but d,Y ∈

{0, 1}). So we have instead given simple conditions covering a

wide range of popular group fairness definitions. Both Dworkian

individual fairness and individual counterfactual fairness fall victim

to the same issue as group fairness: treating every individual equally

is still unfair if you treat all equally badly. Constant functions are

always individually fair. And the output of a constant function does

not change when you change the value of the sensitive attribute,

so it is also individually counterfactually fair.
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Taste-based and statistical discrimination take a fundamentally

different approach to defining (un)fairness from definitions predi-

cated on prediction error. We might hope that by eliminating both

taste-based and statistical discrimination, we could prevent bla-

tantly unfair equilibria – we would thus be able to define discrimina-

tion as the combination of taste-based and statistical discrimination.

Unfortunately, Proposition 3.1 already implies this is not the case.

The constant classifier д(x) = 0 is an SCE inMx,f (it may be played

at equilibrium for all x) which results in negative utility for all x ,
and there is an alternative classifier д(x) = 3/2 which is an SCE that

results in positive utility for all x , so д(x) = 0 is a blatantly unfair

equilibrium strategy. This blatantly unfair classifier is constant, so

is not causally dependent on any sensitive attribute, and thus is not

an example of taste-based discrimination. Moreover, all x create the

same surplus with the firm, and so this classifier cannot be an exam-

ple of statistical discrimination. This is a concrete example where

taste-based and statistical discrimination represent a very different

kind of inequality. Since Mx,f has a blatantly unfair equilibrium

π̃ where π̃f = 0, this classifier satisfies the fairness definitions in

parts (1), (3), and (4) of Proposition 3.4. Assuming that the labels

Y (x) are a constant because each candidate’s surplus is identical,

the fairness definitions in part (2) are also satisfied by the constant

classifier д(x) = π̃f = 0.

Corollary 3.5. For any sensitive feature A and constant labels
Y (x), there is a blatantly unfair equilibrium inMx,f where f uses a
constant classifier at equilibrium, but this classifier simultaneously
satisfies statistical parity, equalized odds, sufficiency, individual fair-
ness, and displays no taste-based or statistical discrimination.

If we want to prevent blatantly unfair equilibrium, we cannot

use any of these definitions of fairness. Yet if the only reason to

introduce this conception of unfairness in games is to point out

that guaranteeing EOP is unhelpful when no candidate receives

sufficient resources, then existing remedies would be sufficient. In

particular, we could take a welfare-based approach, where we try

to ensure that the average (or minimum, or some function) of the

utilities the players receive is as large as possible. This kind of

utilitarianism has been expounded on in the context of algorithmic

fairness by Heidari et al. [41]. If we for example insist on maxi-

mizing on welfare, and define welfare as the minimum share of

the surplus, in our example this would force an equal split of the

surplus, and this outcome would not be blatantly unfair. Blatant

unfairness as defined is certainly compatible with a welfare-based

approach: we are insisting that welfare be past a certain threshold.

Nonetheless, we have a different motivation than approaches based

on welfare typically grounded in EOP by defining welfare as some

function of the utilities of individuals (as in Heidari et al. [41]).

These approaches, just like group, individual, and causal fairness

definitions, fall victim to Anderson’s criticisms of EOP: neglecting

the social equality of workers and enacting a paternalistic oversight

by those using such approaches.

Where we should see welfare-based approaches and relational

approaches truly diverge, though, is in larger, more complex sys-

tems than complete-information games. In complete-information

games, the firm and candidate have already implicitly agreed that

both of their goals are to maximize the utilities and they agree em-

pirically on how each possible set of actions will produce different

utilities. Each already recognizes the other’s needs, as represented

by these utilities, even if they are not a priori willing to satisfy

those needs. Because each agrees to the other’s utilities, the only

way to justify their actions is according to these utilities: hence an

equilibrium is relationally unfair when they are not incentivized

to meet each other’s needs. Andersonian relational equality best

explicates complex domains without complete information, where

players do not necessarily agree on each other’s payoffs. Players

can communicate with each other and have uncertainty about each

other and the future. Each player may have various sorts of uncer-

tainty about their own goals – they may have multiple competing

goals or may not even know what their own goals should be. This

is the world is what which relational equality is intended for, and

we pose as an open question.

4 LIMITATIONS AND FUTUREWORK
We have shown how the existence of self-confirming equilibria in

hiring markets create blatantly unfair situations in which candi-

dates are trapped in an undesirable relationship with a firm. This

scenario enabled us to define a formal model of blatant unfairness

as equilibria of this kind, and show how existing technical defini-

tions of fairness fail to escape these equilibria. However, this work

is not without limitations. We have not, for instance, developed a

full formal model of relational equality. Indeed, as we discuss in

Section 3.4, our approach is largely consistent with welfare-based

approaches, though its motivation is distinctly different. Unlike in

traditional social choice theory however, we focus solely on sets of

payoffs that can happen at equilibrium. We leave the problem of

the model’s relationship to social choice theory outside of games

where players agree on each other’s utilities to future work.
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A PROOFS
Proposition 3.1. If beliefs satisfy of (f ) ≥ of (x) and of (x) ≥

ox (x), the strategy profile where, for all candidates x , the firm offers
д(x) = of (x) and the candidate accepts that offer (and acts arbitrarily
on other offers) is an SCE witnessed by those beliefs. Consequently,
for any pure strategy д : X → [0, 3] played by f , and any strategy
by the market player, there exists a set of beliefs where д is an SCE.

Proof. Suppose the firm plays д(x) = of (x) and believes the

candidate will accept if and only if д(x) ≥ of (x). More formally, we

set µf (x) to be a distribution with probability mass 1 on the function

that maps each node corresponding to an offer z to the accept action
if and only z ≥ of (x). (Again, we’re abusing notation slightly

by referring to f ’s beliefs about x ’s behavior strategy as µf (x)
without specifying a complete distribution over all player’s behavior

strategies.) Further suppose the candidate correctly believes the

firm will play of (x), and accepts this offer.

The candidate believes they will receive д(x) − 1 utility if they

accept or ox (x)−1 in expectation otherwise, so if of (x) ≥ ox (x), the
candidate believes accepting is a best response. The firm believes

they will receive 2 − д(x) if the candidate accepts, and in that case,

the maximum utility they believe they can get is 2 − of (x) (since

then д(x) ≥ of (x)). The firm also believes that if the candidate

rejects the offer they will receive 2 − of (f ), so offering of (x) is a
best response when of (f ) ≥ of (x). Since the candidate accepts this
offer, the only information sets reached are the firm’s action and the

candidate’s action, and both of their actions occur with probability

one under their own beliefs.

Thus, the above beliefs witness that these best responses form

an SCE when of (f ) ≥ of (x) and of (x) ≥ ox (x). Given an arbitrary

deterministic classifier д : X → [0, 3], for each x , there are always
beliefs that satisfy these constraints: set the beliefs such that д(x) =
of (x) = ox (x) and of (f ) = 3. Then it immediately follows that

for all x , the strategy profile where the firm plays д(x) and the

candidate accepts is an SCE. □

Proposition 3.2. For any pure strategy д : X → [0, 3] played by
f , if beliefs satisfy o(f ) = of (f ) = ox (f ) ≤ o(x) = of (x) = ox (x),
the strategy profile where the firm offers д(x) ≤ o(f ) and x accepts if
and only if д(x) ≥ o(x) is an SCE and a Nash equilibrium witnessed
by those beliefs.

Proof. Suppose the firm believes the candidate will accept if

and only if д(x) ≥ o(x), and plays д(x) such that д(x) ≤ o(f ).
Suppose the candidate correctly believes the firmwill playд(x). The
candidate’s only two choices are to accept д(x) or take their outside
option ox (x) = o(x), so their best response is to accept if and only

if д(x) ≥ o(x). The firm, meanwhile, will never increase their utility

by offering more than o(f ), as either the candidate rejects and they

get exactly 2−o(f ), or the candidate accepts and they receive strictly
less. Otherwise, they will receive exactly 2−o(f ) since o(f ) ≤ o(x):
If д(x) ≤ o(f ) < o(x), then the candidate rejects and they receive

their outside options, or similarly, if д(x) < o(f ) = o(x), again the

offer is less than x ’s outside option and they reject. The only other

case is whenд(x) = o(f ) = o(x), and now the candidate accepts, but

again the firm receives 2−д(x) = 2−o(f ). So any offer д(x) ≤ o(f )
is a best response. Moreover, by supposition, the candidate and

firm’s beliefs are correct on all information sets with probability

one, so this is not only an SCE but a Nash equilibrium. □

Proposition 3.4. Consider a two-player complete-information
game Gx,f with players x ∈ X and f , and f ’s pure strategies are
of the form д(x), where д : X → D, D ⊂ R. Suppose there exists a
blatantly unfair equilibrium π̃ in this game. Then:

(1) If D is finite or a real interval, and for all y and for all z in
the image F1(D,Y (X )) there exists a prediction d such that
F1(d,y) = z, then there is a strategy д for f that is (F1, F2)-
group fair and blatantly unfair.

(2) If π̃f is a pure strategy, |Y (X )| ≤ |F2(D,Y (X ))|, and for all y
and for all z in the image F2(D,Y (X )) there exists a prediction
d such that F2(d,y) = z, then then there is a strategy д for f
that is (F1, F2)-group fair and blatantly unfair.

(3) For allM,m, there is a strategyд for f that is (M,m)-individually
fair and blatantly unfair.

(4) Consider a causal graph which includes as nodes all of X as
well as a sensitive feature A and the output of the strategy, i.e.
D. Suppose A has out-degree 0. Then there is a strategy д for f
which, with respect to A, is individually causally fair, exhibits
no taste-based discrimination, and is blatantly unfair.
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Proof of (1). First, suppose for all y ∈ Y and for all z in the im-

age F1(D,Y (X )) there exists a prediction d ∈ D such that F1(d,y) =
z. Consider the function F1(·,y) onto its image. Since it is by def-

inition surjective, it always has a right inverse, i.e. a function

iy : F1(D,y) → D such that for any z ∈ F1(D,y), F1(iy (z),y) = z.
Moreover, a measurable right inverse exists whenD is finite or a real

interval – more generally, it can be any uncountable Polish space

[58] – so we may assume iy is measurable. Let x0 ∈ X . Then let

д(x0) = π̃f and for all other x ∈ X , let д(x) = iY (x )(F1(π̃f ,Y (x0))).
By supposition, д is blatantly unfair. This is well defined when

the support of F1(π̃f ,Y (x0)), which is contained in F1(D,Y (x0)),
is in the domain of iY (x ). So it suffices to be able to find, for any

z ∈ F1(D,Y (x0)), a d ∈ D such that F1(d,Y (x)) = z, which we have

already assumed.

Thus we can conclude F1(д(x),Y (x)) = F1(π̃f ,Y (x0)) for all x ,
and so for any a ∈ A,

P[F1(д(x),Y (x)) ≤ z |A(x) = a, F2(д(x),Y (x))]

= P[F1(π̃f ,Y (x0)) ≤ z |A(x) = a, F2(д(x),Y (x))]

= P[F1(π̃f ,Y (x0)) ≤ z],

where the probabilities are over the randomness of x and the ran-

domness of the functions, and the last equality follows from the

independence of F1(π̃f ,Y (x0)) from x . Hence д is (F1, F2)-group
fair. □

Proof of (2). Now, suppose for all y and for all z in the image

F2(D,Y (X )) there exists a prediction d such that F2(d,y) = z. If
|Y (X )| ≤ |F2(D,Y (X ))|, then there exists an injection i : Y (X ) →

F2(D,Y (X )). For y ∈ Y (X ), let dy be the prediction satisfying

F2(dy ,y) = i(y). Let x0 ∈ X . Now we construct д, and there are

three cases depending on how π̃f coincides with the decisions dy .
If it happens to be the case that dY (x0) = π̃f , let д(x) = dY (x ) for all
x ∈ X . If there is no x ∈ X for which dY (x ) = π̃f , let

д(x) =

{
dY (x ) if Y (x) , Y (x0)

π̃f if Y (x) = Y (x0).

Otherwise, call x1 the value for which dY (x1) = π̃f . Then let

д(x) =


dY (x ) if Y (x) , Y (x0),Y (x1)

dY (x1) if Y (x) = Y (x0)

dY (x0) if Y (x) = Y (x1).

By construction, д(x0) = π̃f and д is blatantly unfair. Let x j ,xk ∈ X .

if

F2(д(x j ),Y (x j )) = F2(д(xk ),Y (xk )),

since i was injective,Y (x j ) = Y (xk ). By construction ofд this in turn
implies д(x j ) = д(xk ) and so F1(д(x j ),Y (x j )) = F1(д(xk ),Y (xk )).
Thus for any a ∈ A,

P[F1(д(x),Y (x)) ≤ z |A(x), F2(д(x),Y (x))]

=P[F1(д(x),Y (x)) ≤ z |F2(д(x),Y (x))]

and д is (F1, F2)-group fair.

□

Proof of (3). It suffices to consider the constant function that

fixes π̃f , i.e. let д(x) = π̃f for all x ∈ X . Then M(д(x),д(y)) = 0 ≤

m(x ,y) for all x ,y ∈ X . □

Proof of (4). Again it suffices to consider the constant function

that fixes π̃f , i.e. let д(x) = π̃f for all x ∈ X . д only depends on

π̃f , which in turn cannot depend on A, because it has out-degree
0. No path in the causal graph between A and the output of д
immediately implies that it is both individually causally fair and

exhibits no taste-based discrimination. □

B CRITICISMS OF COMPUTATIONAL
DEFINITIONS OF FAIRNESS

Appeals to consider the broader societal implications of algorithmic

systems are often implicitly calls to focus on issues of relational

equality, and existing debates around algorithmic fairness all touch

on aspects of relational equality. However, none captures the full

bundle of related concerns relational equality makes conceptually

tractable. Perhaps the most closely related work is that of Kasy

and Abebe [52], who recognize limitations in existing definitions of

fairness closely related to the broader concerns relational equality

brings to the fore. Other related works include that of Birhane

[15], who focuses on issues of Afro-feminist relational ethics in

algorithmic systems, and Viljoen [71], who proposes a relational

account of data and its governance.

In contrast to Kasy and Abebe [52], we argue that the necessity

of widening the scope of what fairness means, especially in order

to include theories of relational equality, requires entirely rethink-

ing existing formal models of welfare and fairness altogether. We

build on wider debates around the differences between what have

been variously described as distributional versus dignitary [44] or

allocative versus representational harms [1]. There is now a robust

tradition in algorithmic fairness arguing broadly for attention to

social inequalities through critiques of algorithmic distribution in

a wide set of areas [10, 20, 23, 32, 43, 60]. Focusing on relational

equality as a concept draws together many of these extant criti-

cisms of algorithmic fairness under one banner: that technologists

must attend to the realities of society’s inequalities and injustices

whatever else they do.

Theories of relational equality emphasize the centrality of fair

social relations and the elimination of status and power hierarchies

as the “point” of egalitarian thought. Relational equality provides

an overarching frame for the wide variety of critiques leveled at

algorithmic fairness work from critics both internal and external

to the community [66, 67, 72]. Our focus here is on the variant of

relational equality proposed by Elizabeth Anderson [7] known as

democratic equality. In her initial 1999 article describing democratic

equality and in subsequent work [3–6], Anderson has pointed out

that the proponents of distributional equality in political theory

[18, 30] are often more inadvertently damning of the concept of

equality than supportive of it. For Anderson, many extant theories

of equality combine the worst abuses of free market and centralized

planning systems: such theories both neglect the social equality of

large portions of the population, such as stay-at-home caregivers,

but also entail invasive, paternalistic oversight by the state in order

to determine moral desert.

Instead, “the proper negative aim of egalitarian justice is not to

eliminate the impact of brute luck from human affairs, but to end

oppression, which by definition is socially imposed”; likewise, egal-

itarian justice’s “proper positive aim is not to ensure that everyone
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gets what they morally deserve, but to create a community in which

people stand in relations of equality to others” [7] (288). Equality is

a question of social relations first and foremost, grounded in the

“equal moral worth of persons” (312). Differences in the diversity of

human experience do not justify unequal social relations.

Anderson’s democratic equality is notable for being resolutely

opposed to paternalistic coercion and moral judgments by institu-

tions, a practice simultaneously under fire in debates around digital

“nudging” [38]. In the context of algorithmic fairness, democratic

equality thus also be understood as a critique of what Zuboff [74]

terms “surveillance capitalism” facilitated by widespread digital

surveillance, data collection, and ML-based analytics. These sys-

tems only enhance the capabilities of what Anderson elsewhere

describes as “private government" [6] – the ability of institutions

such as private enterprises to command and control their workers

while enabling limited recourse. Given that public authorities some-

times also practice such coercion as well, Anderson observes that

democratic equality, with its emphasis on individual dignity, lack

of social standing, and democratically enabled decisions, is a mech-

anism to ensure the state remains fair, accountable, and benefits all

equally [4]. Nonetheless, relational equality takes as axiomatic that,

to paraphrase the poet John Donne, "no one is an island": equal

social relations are in some way dependent on material equality

and vice versa. By bringing together critiques of existing concep-

tions of equality focused solely on material equality with a shift

in focus to social relations, Anderson’s conception of relational

equality provides a potential path forward to overcome the call in

algorithmic settings to attend to the realities of society’s injustices

and unequal social relations.

Prior to this work, there have been a variety of other critiques

of existing computational fairness definitions. We briefly review

these critiques, as well as how our critique put forth in this work

differs from these.

Group fairness in particular has seen much criticism ranging

from an overly narrow conceptualization of disadvantage [44] to

how they fail to treat similarly “risky” people similarly [19]. There

has also been criticism specific to particular definitions of group

fairness. For example, Dwork et al. [28] and Hardt and Srebro

[40] criticize statistical parity for reducing utility to the entity per-

forming the classification, as satisfying statistical parity may not

permit a classifier that agrees with the target labels Y . To deal

with this issue, Hardt and Srebro introduce equalized odds (where

F1(д(x),Y (x)) = д(x) and F2(д(x),Y (x)) = Y (x)). However, equal-
ized odds, as a notion of group fairness, still does not escape the

criticisms that are applicable to all group fairness definitions.

Our critique of group fairness is an extension of those focused on

its normative and philosophical underpinnings (e.g. Hoffman [44]).

More directly, we can apply here the same criticism that Ander-

son levels against proponents of distributional equality in political

theory, since the existing definitions of fairness largely implement

these exact theories of distributional equality [42]. In asking for

an equality of resources, existing formal fairness definitions ne-

glect the social equality of workers for which firms and employers

believe have poor outside options, such as “no-wage” industries

like stay-at-home caregiving [26] or low-wage industries like fast

food or package delivery [65]. Yet existing definitions also involve a

paternalistic oversight by decision makers. They get to decide who

deserves equal treatment and who does not, via control over the

inputs and outputs of algorithmic fairness: e.g. what data is used to

create labels, what counts as a sensitive feature, and even who gets

to skip the algorithmic decision making system entirely [24, 68].

We demonstrate how an ethical theory grounded in relational

equality renders group fairness undesirable to use: if everybody is

treated equally but equally badly, then this outcome will appear un-

fair but still satisfies group fairness. In contrast to previous technical

work where such criticisms, at least in principal, might be avoided

by minor changes to the definition, Anderson’s critiques applies

much more broadly – and not only for group fairness definitions,

but also Dworkian individual fairness and causal fairness.

Previous criticism of individual fairness has largely focused on

the practical difficulties in constructing themetricm, which encodes

who should be treated similarly to each other and who should

not [39, 48, 50]. This criticism closely mirrors the debates within

theories of EOP as to when people should be held responsible for

differences between themselves. While we agree that group fairness

fundamentally fails to protect individuals, it may be the case that

constructing the metric is a solvable problem, subject to a particular

interpretation of EOP. However, our criticism focuses on the fact

that individual fairness is still a notion of distributional equality:

just as in group fairness, if everybody is treated equally but equally

badly, then this outcome seems unfair but still satisfies Dworkian

individual fairness.

Meanwhile, critiques of causal notions of fairness have focused

on two basic conceptual issues around using causal models. The

first kind of critique centers on the difficulties in practice of manip-

ulating sensitive features: an individual cannot practically change

the racial category they are assigned, especially at classification

time [54]. The second kind of critique focuses on the difficulties

of using sensitive features with complex social meanings as stable

entities that can have causal effects. The concern is that what may

seem like an effect of the sensitive feature actually constitutes its

social meaning [46, 54]. Moreover, the only way we can experi-

mentally derive causal effects of sensitive features is negatively, by

fixing a selected set of other features and showing that they had

no effect on the target of interest by fixing them, and that it must

therefore have been because of the change in value of the sensitive

feature (as in résumé audit studies [13]). Similarly to individual

fairness, where the metric provides the substantive guidance on

what counts as fairness, here the features we chose to fix provide

what should count as fair and what should not [45].

These criticisms rely on the particulars of the sensitive feature

mobilized as a social category, and in the difficulties of constructing

a causal model that represents such categories. Here, however, we

avoid the difficulties of formalizing this kind of criticism by focusing

instead on the simple fact that causal fairness is still distributional,

in the sense that it seeks to equalize the distribution of resources

(though of course not “distributional” in the sense of only using the

joint statistics of the features and classifier).

Finally, a line of previous work implicitly criticizes some of

these definitions of fairness by showing that placing a fairness

constraint on the classifier can still lead to unfairness in the overall

system via feedback loops, and that therefore ensuring fairness

requires examining the entire system [22, 31, 57, 59]. But this work

demonstrates only that it is ineffective to place a constraint only
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on the classifier in order to ensure a given fairness definition holds

over time. This work does not demonstrate that the definition of

fairness should not be solely a function of the classifier to begin

with. In contrast, we provide a concrete model where unfairness

cannot be defined solely as a function of a classifier and should be

defined as a property of the entire system instead.

Critically for our purposes, Anderson has noted the necessary

interrelationship between distributional and relational forms of

equality: for Anderson, distributional or material equality is a po-

tentially necessary but insufficient condition for relational equality

to occur. As such, Andersonian relational equality is concerned

with distributional equality to the extent it “requires that everyone

have effective access to enough resources to avoid being oppressed

by others and to function as an equal in civil society” [7] (320). Such

an analysis of the relationship between social power and material

inequality would require looking at dynamics, which we leave for

future work. Anderson notes that some degree of material equality

must be necessary in order to ensure that elites, whether of wealth,

status, or other manifestations of social power, do not gain outsized

influence in a particular society, and we demonstrate a very simple

version of this principle: relationally unequal situations in games

with public knowledge of payoffs can be avoided by ensuring pay-

offs are positive at equilibrium. More sophisticated versions of this

principle will require examining systems with a wider set of actions,

including being able to exert control over the rules of the game.

Blatant unfairness is defined with respect to the actions players

can take, and the most impactful actions are those that change the

game entirely.

C BEYOND TWO-PLAYER GAMES
Implicitly, group fairness appears designed for situations with lim-

ited resources, at least when the labels represent decisions about

resources. If there were no limits to resources, we could employ a

classifier that gave out resources to everybody and there would be

no need to equalize the distribution of the resources across groups.

The firm in Section 3, however, is not resource-constrained because

they produce unit surplus with every candidate. Group fairness

appears entirely unnecessary anyway in this case. So it is worth

investigating what happens in the resource-constrained case, where

firms can only produce surplus with a limited number of candidates.

This kind of constraint is best modeled in a game with many play-

ers, which motivates the need to expand the definition of blatant

unfairness beyond two-player games.

We extend blatant unfairness by considering our previous exam-

ple. We could have considered the set of games {Mx,f : x ∈ X }, pre-

viously examined in Section 3 in isolation, as a single game.Whereas

before, we posited no particular relationship between the games,

here we can consider, for example, what happens if the games hap-

pen simultaneously: The firm plays a strategy д : X → [0, 3], and

then every candidate x simultaneously decides whether or not to

accept the offer д(x). If they accept, as before, they receive д(x) − 1

utility, and the firm receives 2 − д(x) utility, i.e. the firm splits unit

surplus with every candidate. If they reject, as before, they receive

an exogenous but unknown outside option. Call this gameMX .

Since each candidate plays an independent subgame, the equi-

librium strategies we found in Proposition 3.1 exist here in each

subgame. Thus, if we believe that any such individual subgame

with such an equilibrium is blatantly unfair, as we have already

asserted, then we should believe the entire game is blatantly unfair

regardless of the outcomes of all the other subgames. This moti-

vates the following definition, which says that all players should be

like the firm in this example, which faces a constant, positive-sum

subgame with the candidate for whom the equilibrium is blatantly

unfair, or else be like the other candidates, who are unaffected:

Definition C.1. An equilibrium π is blatantly unfairwith respect
to x in a complete-information game if the payoff for x under π is
not positive, but there is an equilibrium π ′ where x receives a positive
payoff, and for any other player, they either receive a payoff at least
as high under π ′ as under π , or receive a positive payoff under π ′.

Alternatively, we could define awelfare function as the following:

one set of payoffs is as least as preferred as another if every player

with negative utility receives at least as much utility, and every

player with positive utility still receives positive utility.

MX , introduced above, witnesses the existence of blatantly unfair

equilibria in multi-player games where the firm plays a group fair

classifier (or an individually fair classifier, etc.), though we leave

this to the reader to verify. Proposition 3.4 cannot carry over to

this setting, however: there might not be any equilibria that are

group-fair, let alone the particular equilibria that happens to be

blatantly unfair.

This definition is not the only possibility for extending Definition

3.3. We could consider variants, such as requiring that payoffs for all

players be positive in the alternative equilibrium, for example. We

do not focus on such variations because we believe that distinctions

should be made by examining non-complete-information games

and other more realistic settings, rather than attempting to catalog

all possible variations as has been done for group fairness. We leave

this for future work.

In any case, consider modifyingMX by introducing a constraint

on resources via a limit on the number of jobs the firm can offer.

This may be forced due to diminishing marginal returns to hiring

additional people, or due to the capital overhead hiring requires. For

example, suppose the firm only offers an equal split of the surplus,

or none at all, i.e. д(x) ∈ {0, 3/2}, and can only offer some i < |X |

people the job, i.e. only i people may receive a non-zero offer.

If the firm is a monopoly, so all outside options are zero, then

no д(x) that offers i people the job is part of a blatantly unfair

equilibrium: anyone currently not being offered a job can only be

offered a job at the expense of someone else’s offer, who has no

outside option because the firm is a monopoly. This makes resource-

constrainedmonopolies the “natural” setting for group fairness (and

individual fairness, etc.). But even in this case, this may not be a

strong argument for the use of group fairness in such cases, but

rather an argument for a normative requirement to modify the

setting via policy-making when it appears.

As soon as we jettison the assumption that the firm is a mo-

nopoly, either by adding non-zero exogenous outside options, or

adding more firms so that the market can clear, it’s again possible

for blatantly unfair equilibria to exist. For example, in the simplest

case, if there’s some |X | firms, even if each firm can only hire one

candidate, where outside options are as before (representing either
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exogenous or endogenous outside options), then this is just equiva-

lent to our original model in Section 3 and while blatant unfairness

can exist in this market, that also means there are equilibria where

everyone receives surplus, unlike the monopoly case. While the

constraints firms face may appear at first blush to motivate previous

definitions of group fairness, those definitions still fail to capture

blatant unfairness in markets.
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