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Two-sided platforms rely on their recommendation algorithms to help visitors successfully find a match.

However, on platforms such as VolunteerMatch – which has facilitated millions of connections between

volunteers and nonprofits – a sizable fraction of website traffic arrives directly to a nonprofit’s volunteering

page via an external link, thus bypassing the platform’s recommendation algorithm. We study how such

platforms should account for this external traffic in the design of their recommendation algorithms, given the

goal of maximizing successful matches. We model the platform’s problem as a special case of online matching,

where (using VolunteerMatch terminology) volunteers arrive sequentially and probabilistically match with

one opportunity, each of which has finite need for volunteers. In our framework, external traffic is interested

only in their targeted opportunity; by contrast, internal traffic may be interested in many opportunities,

and the platform’s online algorithm selects which opportunity to recommend. In evaluating the performance

of different algorithms, we refine the notion of competitive ratio by parameterizing it based on the amount

of external traffic. After demonstrating the shortcomings of a commonly-used algorithm that is optimal in

the absence of external traffic, we propose a new algorithm – Adaptive Capacity (AC) – which accounts for

matches differently based on whether they originate from internal or external traffic. We provide a lower

bound on AC’s competitive ratio that is increasing in the amount of external traffic and that is close to

the parameterized upper bound we establish on the competitive ratio of any online algorithm. Our analysis

utilizes a path-based, pseudo-rewards approach, which we further generalize to settings where the platform

can recommend a ranked set of opportunities. Beyond our theoretical results, we demonstrate the strong

performance of AC in a case study motivated by VolunteerMatch data.
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1. Introduction

Online platforms have become increasingly prominent in facilitating social and economic connec-

tions in both the private and nonprofit sectors. In the private sector, the e-commerce platform Etsy

has empowered over 2 million small-scale sellers to showcase their products to over 40 million buyers

1
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and has facilitated transactions on the scale of $4 billion.1 In the nonprofit sector, the crowdfund-

ing platform DonorsChoose has helped public school teachers to successfully solicit $314 million

in donations for 1.7 million classroom projects.2 Similarly, VolunteerMatch has enabled over 14

million connections between organizations and individuals looking for volunteering opportunities.

These platforms attract traffic through multiple channels. Some users organically visit the

platform and rely on its recommendation algorithm to find a desired product or volunteering

opportunity—we refer to these users as internal traffic. Other users, which we refer to as external

traffic, follow an external direct link to a particular page. This external traffic is generated through

a variety of off-platform outreach mechanisms, such as posting on social media or sending cus-

tomized notifications. For example, an artist who sells their handmade products on Etsy may tweet

about them, or an NGO may publicize their volunteering/donation opportunities on their Facebook

page. In this paper, we aim to understand how these matching platforms can efficiently leverage

traffic from all sources in order to maximize the number of successful transactions/connections.

This work is partly motivated by our collaboration with VolunteerMatch (VM), the largest

nationwide platform that connects nonprofits with volunteers. More than 130,000 organizations—

supporting a variety of social causes, ranging from human rights and literacy to helping seniors—

have posted their volunteering opportunities on the VM website. Most of these organizations rely

on volunteers who sign-up after visiting the VM website. Some of these organizations also generate

sign-ups by publicizing their opportunities on other websites, such as LinkedIn or Facebook. Our

analysis of VM data reveals two key facts. First, a significant portion of volunteer sign-ups come

from external traffic: for example, 30% of all sign-ups made by NYC-based volunteers between

August 1, 2020 and March 1, 2021 came from external traffic. Second, there is a significant disparity

across opportunities in terms of both the total number of sign-ups and the source of those sign-ups.

To illustrate these two facts, in Figure 1 we plot the distribution of the number of sign-ups for a

subset of opportunities that all requested 5 volunteer sign-ups.3 Partitioning the sign-ups into two

groups based on their source, we observe that the volume of sign-ups from external traffic (in purple)

and from internal traffic (in green) varies substantially across opportunities.4 From the platform’s

perspective, a key difference between external and internal traffic comes from whether or not the

user’s choice can be influenced: the platform cannot control the “landing page” for external traffic,

but it can impact what internal traffic views (and thus the decisions made) via its recommendation

1 https://www.sec.gov/Archives/edgar/data/1370637/000137063719000028/etsy1231201810k.htm

2 https://www.donorschoose.org/about/impact.html

3 This subset of 100 opportunities is a random sample of all virtual opportunities requesting 5 volunteer sign-ups
between August 2020 and March 2021.

4 We only observe the source for a subset of sign-ups, as described in Appendix C. We estimate the source of each
opportunity’s sign-ups proportionally, based on this subset.
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Figure 1 Distribution of sign-ups on VM across a subset of opportunities requesting 5 volunteer sign-ups.

algorithm. Through its search design, the platform can (potentially) re-distribute “excessive” sign-

ups from internal traffic (i.e., sign-ups that exceed an opportunity’s need) to opportunities with

insufficient sign-ups, thereby helping VM achieve its strategic goal of maximizing the total number

of “useful” sign-ups across opportunities.5 For instance, for the subset of opportunities presented

in Figure 1, in hindsight, 49% of sign-ups from internal traffic (the dashed green portions of the

bars) could potentially have been re-directed to opportunities with insufficient sign-ups.

The above observations motivate our main research question: how can matching platforms, such

as VM, integrate external and internal traffic to maximize the number of useful sign-ups? As the

traffic pattern is generally unknown a priori and there is heterogeneity in the level of external

traffic, making better real-time recommendations to internal traffic may be challenging.

1.1. Our Contributions

To study the above question, we introduce a framework for online matching with multi-channel

traffic. Taking a competitive analysis approach, we show that existing algorithms—that are optimal

in the absence of external traffic—fail to integrate such traffic efficiently; thus, we develop a new

algorithm that effectively incorporates external traffic, resulting in near-optimal guarantees in

certain regimes. Beyond worst-case guarantees, we illustrate the effectiveness of our algorithm in

a simulation study calibrated on VM data. We describe each contribution in more detail next.

A model for online matching with multi-channel traffic: For concreteness, we utilize

terminology from the context of VM and refer to the two sides of the matching platform as “oppor-

tunities” and “volunteers.” In our setting, a fixed set of opportunities are posted on the platform,

5 We note that the skewed sign-up distribution not only hurts opportunities with insufficient sign-ups, but it also
harms other stakeholders. For instance, individuals that sign up for opportunities with excessive sign-ups may be
discouraged if their attempts to volunteer are ignored or if they exert unnecessary effort. Additionally, organizations
that receive excessive sign-ups may also incur/impose costs due to screening or training unnecessary volunteers.
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each requiring a certain number of volunteers which we refer to as their “capacity.” Volunteers

arrive sequentially (in an arbitrary order) and are either external or internal traffic. External traffic

directly views a specific opportunity’s page and signs up with their conversion probability for that

opportunity (i.e., the probability that the volunteer signs up for that opportunity conditional on

viewing it). By contrast, internal traffic can be influenced by the platform’s recommendation algo-

rithm as follows: when an internal traffic volunteer arrives, the platform observes their conversion

probabilities for each opportunity, and then must immediately and irrevocably recommend one

such opportunity.6 The goal of the platform is to maximize the total number of “useful” sign-ups,

i.e., the total number of signups that don’t exceed an opportunity’s capacity.

In the absence of external traffic, the above problem can be viewed as an instance of the online

bipartite B-matching problem with stochastic rewards and an adversarial arrival sequence. In this

general framework, it has been shown that a simple myopic algorithm commonly-referred to as

MSVV achieves the best-possible competitive ratio of 1−1/e (Mehta et al. 2007).7 We augment this

framework by modeling external traffic as arrivals with only one possible edge (e.g., volunteers that

only consider one opportunity). The presence of external traffic reduces the complexity of making

real-time decisions: the platform cannot change what external traffic volunteers will view, as they

are only interested in one opportunity. Thus, in the extreme case where all capacity can be filled

by external traffic, the platform trivially maximizes the number of useful sign-ups.

In light of the above observation, we parameterize problem instances based on the fraction of

total capacity that can be filled by external traffic, which we call the effective fraction of external

traffic (EFET), as formalized in Definition 2. For a given EFET, we define the competitive ratio

of an algorithm to be the worst-case ratio between its outcome and that of a benchmark, among

all instances with that EFET (see Definition 3). Our benchmark (denoted OPT) is a clairvoyant

solution that a priori knows the sequence of arrivals as well as the sign-up realizations of external

traffic, but only observes the sign-up realizations of internal traffic ex-post (see Definition 1). We

study how the addition of external traffic improves the achievable competitive ratio.

Failure of channel-agnostic algorithms: To gain intuition, we first focus on a thought exper-

iment where all of the external traffic arrives before any of the internal traffic. In such a setting,

after the sign-ups from external traffic realize, the platform is faced with a standard instance of the

online matching problem. Thus, by making recommendations in the remaining problem according

6 In our base model (introduced in Section 3), we assume that the platform recommends a single opportunity. We
consider a more general setting where the platform can present a ranking of opportunities in Section 5.

7 Though Mehta et al. (2007) considers a setting with deterministic rewards, as noted in Mehta et al. (2013), the
guarantee and the optimality of MSVV extend (asymptotically) to a B-matching setting with stochastic rewards when
all capacities are sufficiently large. We will henceforth describe results only for the large-capacity setting; however,
our technical results are all parameterized by the minimum capacity.
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to an optimal algorithm like MSVV, we would hope to achieve a competitive ratio that is a convex

combination of 1 and 1− 1/e. Indeed, in Proposition 1, we prove that this convex combination is

an upper bound on any online algorithm. However, somewhat surprisingly, applying MSVV to the

entire problem instance does not achieve this intuitive bound (Proposition 2). The suboptimality

of this algorithm stems precisely from a lack of differentiation between external and internal traffic.

Adaptive Capacity (AC) algorithm: Building on the intuition developed in the thought

experiment above, we introduce a new algorithm called Adaptive Capacity (AC) which reduces an

opportunity’s capacity by one whenever that opportunity receives a sign-up from external traffic.

If all external traffic arrives before any internal traffic, AC achieves the upper bound in Proposition

2. However, in a general setting where external traffic can arrive at arbitrary times, AC does not

have the information needed to reduce capacities up-front; instead, it adaptively reduces capacity

after each sign-up from external traffic (see Algorithm 2).

Our main theoretical result establishes a lower bound (as a function of the EFET) on the com-

petitive ratio of AC (see Theorem 2 and Figure 2b) parametrized by the maximum conversion

probability ratio (MCPR), which we formally introduce in Definition 4. As the MCPR increases

(e.g., in settings where volunteers have significant heterogeneity in their non-zero conversion prob-

abilities), the AC algorithm’s guarantee decreases. Fixing any MCPR, our lower bound curve starts

at 1− 1/e (when there is no external traffic) but weakly increases with the EFET and eventu-

ally breaks the barrier of 1− 1/e. To shed light on the limitations imposed by real-time decision

making, we also establish an upper-bound (as a function of the EFET) on the competitive ratio

of any online algorithm (Theorem 1). If the MCPR is 1 (which is the case, e.g., if each conversion

probability is either 0 or 1), our upper bound nearly matches our lower bound on AC for any EFET.

This is particularly intriguing because our algorithm does not know the volume of external traffic

in advance; yet by adaptively reducing capacities, it achieves a near-optimal competitive ratio.

To analyze the competitive ratio of AC, we extend the LP-free approach in Goyal et al. (2020),

which establishes a system of inequalities involving path-based “pseudo-rewards.” To break the

barrier of 1− 1/e we leverage the observation that an algorithm cannot make a bad decision for

external traffic, and thus we define pseudo-rewards based on the source of the traffic. Moreover,

as the volume of external traffic varies across opportunities, we move beyond an opportunity-level

analysis, and instead bound the “global” value of AC relative to OPT.

In Section 5, we extend our model to one where the platform recommends a ranked subset of

opportunities and the volunteer signs up for (at most) one of these opportunities. We naturally

generalize the AC algorithm to a ranking algorithm denoted AC-R (see Equation (12)). Using our

flexible proof technique, we establish a lower bound on AC-R’s competitive ratio for arbitrary
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volunteer choice functions (Proposition 4) as well as a stronger lower bound for a special class of

volunteer choice functions (see Definition 5 and Proposition 5).

Case study based on VM: To illustrate the effectiveness of our algorithm in practice, we

evaluate its performance on a problem instance constructed using a VM dataset that enables us

to preserve real-life patterns of external traffic and heterogeneity in conversion probabilities. We

show that our AC algorithm significantly outperforms a proxy for current practice on VM (Figure

4a). It achieves this level of performance by reducing the number of excessive sign-ups, thereby

utilizing internal traffic more efficiently (Figure 5).

2. Related Work

Our work relates to and contributes to several streams of literature.

Generalized Online Matching: The rich literature on online matching started with the sem-

inal work of Karp et al. (1990); given the scope of this literature, we discuss only a few papers and

kindly refer the reader to Mehta et al. (2013) for a comprehensive survey. We model the platform’s

problem as a generalized instance of online B-matching (Kalyanasundaram and Pruhs 2000), which

has been extensively studied in the context of online advertising (Mehta et al. 2007, Buchbinder

et al. 2007, Balseiro et al. 2020, Udwani 2021).8 Variants of online B-matching problems have been

recently proposed to study a variety of problems arising in online platforms, including real-time

assortment decisions (Golrezaei et al. 2014, Ma and Simchi-Levi 2020, Aouad and Saban 2020,

Désir et al. 2021) and online allocation of reusable resources (Feng et al. 2019, Goyal et al. 2020,

Rusmevichientong et al. 2020, Gong et al. 2021). We contribute to this line of work by introducing

a variant of online matching motivated by platforms with multi-channel traffic.

In our model, each external traffic volunteer corresponds to a degree-one arriving node. Our AC

algorithm effectively incorporates these degree-one nodes, and not only breaks the barrier of 1−1/e

given a sufficient amount of external traffic, but also achieves a near-optimal competitive ratio in

certain parameter regimes. In a similar vein, the work of Buchbinder et al. (2007) and Naor and

Wajc (2018) impose a bound on the degree of all nodes in one or both sides and show that one can

improve upon a competitive ratio of 1− 1/e for such structured instances. We emphasize that our

work differs from these papers, as we make no assumption on the degree of internal traffic. Our

proof technique builds on the flexible LP-free approach of Goyal and Udwani (2019) and Goyal

et al. (2020), which we use to distinguish between external and internal traffic in our analysis.

Hybrid Traffic Models: The challenge of integrating different channels of traffic arises in other

application domains as well, such as retail and e-commerce. Dzyabura and Jagabathula (2018) study

8 Our framework allows for stochastic rewards, which can introduce additional challenges (Mehta and Panigrahi 2012,
Goyal and Udwani 2019). We sidestep this challenge by parameterizing our results based on the minimum capacity
and by focusing on the large-capacity regime, following the approach of this literature.
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a retail setting where the firm offers products through both offline and online channels. Consumers

are a mixture of three types: those who visit only online or only offline, and those who visit the

store before making a purchasing decision online (and thus their preference may be impacted by

the products showcased in the offline store). They study assortment problems for this mixture of

consumers. In the context of e-commerce, Esfandiari et al. (2015) and Hwang et al. (2021) consider

online allocation problems where the traffic is composed of a stochastic (predictable) component

as well as an adversarial (unpredictable) one. We contribute to this line of work by introducing a

new hybrid traffic model that consists of external and internal traffic.

Design of Matching Platforms: Motivated by the rapid growth of online matching platforms,

recent work has shed light on how platform design can influence matching outcomes, e.g., in the

context of labor markets (Aouad and Saban 2020), crowdsourcing (Manshadi and Rodilitz 2022),

affordable housing (Arnosti and Shi 2020), ridesharing (Besbes et al. 2021), and dating markets

(Ŕıos et al. 2020). Among other insights, this line of research analyzes the relative merits of different

pricing/compensation policies (Alaei et al. 2022, Elmachtoub et al. 2022), demonstrates the value

of limiting user choice (Immorlica et al. 2021, Kanoria and Saban 2021), and provides guidance

on which assortments to show users of two-sided platforms (Ashlagi et al. 2019, Aouad and Saban

2020, Feldman and Segev 2022). We add to the platform design literature by studying how online

matching platforms should adjust their recommendations to account for external traffic.

3. Model

In this section, we first formally introduce our model for the problem that a platform faces when

providing recommendations in the presence of multi-channel traffic, which is a variant of online

matching. (For ease of exposition, we will use terminology from the context of a volunteer matching

platform to describe the model.) We then describe the platform’s objective and the metric of a

competitive ratio, which we will use to evaluate any online algorithm.

Each problem instance I consists of a static set of opportunities on the platform (denoted S),

a finite horizon of T periods, and a sequence of T volunteers who arrive to the platform (denoted

~A). We index opportunities with i from i= 1 to n= |S|. Each opportunity i has capacity ci, which

represents the total number of volunteer sign-ups needed by opportunity i. In each period t, the tth

volunteer in sequence ~A arrives to the platform. As each period corresponds a volunteer arrival,

we index volunteers according to their arrival time, i.e., volunteer t arrives at time t for t∈ [T ].9

Volunteer dynamics: When volunteer t arrives, the platform observes its type, which consists

of two components. The first component of a volunteer’s type is its source, either ext or int, which

9 For any n∈N, we use [n] to denote the set {1,2, . . . , n}.
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indicates whether the volunteer arrives to the platform as external or internal traffic, respectively.

This is our way of modeling the multi-channel nature of traffic to the platform. We use Vext (resp.

V int) to denote the set of volunteers who arrive as external traffic (resp. internal traffic).

The second component of a volunteer’s type is a vector µt = {µi,t : i ∈ S}, where µi,t is the

pair-specific conversion probability with which volunteer t will sign-up for opportunity i if the

volunteer views opportunity i. As motivated in the introduction, we assume that whenever external

traffic arrives, they cannot be influenced by the platform and instead directly view their targeted

opportunity, denoted i∗t . By contrast, the platform chooses the opportunity that internal traffic

views (as formalized below). After viewing an opportunity and making a sign-up decision, the

volunteer leaves the platform.

Platform’s Decisions and Objective: Upon each arrival, the platform observes the volunteer’s

type, i.e., their source as well as their pair-specific conversion probabilities. The platform then

must immediately and irrevocably recommend a single opportunity to volunteer t, denoted St ∈
S ∪ {0}.10 (In Section 5, we discuss how our model and results generalize to settings where the

platform provides a ranked set of recommendations.) For external traffic, even though the platform

plays no role in the volunteer’s decision, we adopt the convention that the platform recommends

St = i∗t . The platform’s recommendation for internal traffic can depend on the current volunteer’s

type, opportunity capacities, and the full history of volunteer arrivals and decisions. The volunteer

then (deterministically) views the recommended opportunity, and signs up according to their pair

specific conversion probability. We use the random variable ξt(St)∈ {St,0} to denote the volunteer’s

sign-up decision when presented with the recommendation St.

The platform’s objective is to maximize the amount of capacity filled by all volunteers (either

internal or external traffic). We assume that all the sign-ups for an opportunity beyond its capacity

provide no value. In the context of volunteer matching, these “excessive” sign-ups represent an

ineffective use of volunteers, but can also have significant negative side effects, such as overwhelming

the volunteer-management staff for that opportunity due to costly screening and reducing volunteer

engagement due to under-utilization (Sampson 2006). (In other contexts such as e-commerce, the

platform may be naturally constrained based on capacities.)

In pursuit of this objective, the platform follows an online recommendation algorithm π ∈Π. For

a volunteer arriving at time t, let opportunity Sπt denote the (possibly random) opportunity recom-

mended by algorithm π. Then, the expected amount of filled capacity generated by π (henceforth

referred to as the expected value of π) on instance I is given by

π(I) = E
[∑
i∈S

min
{
ci,
∑
t∈[T ]

1[ξt(S
π
t ) = i]

}]
,

10 We introduce a “dummy” opportunity with index 0, which we use to indicate when the platform does not recommend
an opportunity and when a volunteer does not sign-up for an opportunity.
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where the expectation is taken with respect to the volunteers’ sign-up realizations and, possibly,

the randomized decisions by the algorithm.

Performance metric: To assess the quality of any proposed online algorithm π, we compare

its expected value to that of an optimal clairvoyant algorithm OPT on the same instance, denoted

by OPT(I). Consistent with the literature, we assume that OPT operates with a priori knowledge of

the exact sequence of volunteer arrivals ~A. Moreover, to compare ourselves against a benchmark

that utilizes external traffic to the fullest extent possible, we strengthen OPT further by assuming

it has foreknowledge of the sign-up decisions of all external traffic. We note that this results in a

stronger OPT than one that does not have foreknowledge of the sign-up decisions of any arrivals,

and thus will understate the performance of π compared to an OPT that has knowledge of only the

arrival sequence ~A.11 This stronger benchmark aids in our analysis, as will become clear in Section

4. We formalize our notion of the benchmark OPT in the following definition.

Definition 1 (Optimal Clairvoyant Algorithm) The optimal clairvoyant algorithm is the

solution to a dynamic program (of exponential size) which takes as input the instance I as well

as the sign-up decisions of all external traffic throughout the time horizon. Upon the arrival of

each internal traffic volunteer, the optimal clairvoyant algorithm recommends an opportunity SOPT
t ∈

S ∪{0} that maximizes the total expected amount of filled capacity, given the sign-up history up to

that point and the inputs to the program. Whenever there is more than one opportunity in this set of

optimal opportunities, we use the convention (without loss of optimality) that OPT deterministically

recommends the opportunity in this set with lowest index.

We highlight that our definition of OPT ensures that it fills as much capacity as possible with

external traffic. To see this, first note that OPT knows in advance how much capacity can be filled

by external traffic. Furthermore, if capacity can be filled by external traffic, then OPT will never

fill it with internal traffic instead: our convention for breaking ties in favor of opportunities with

the lowest index implies that OPT will recommend opportunity 0 (i.e., no opportunity) rather than

wasting the sign-up from external traffic that will realize later.

The value of an algorithm relative to that of OPT can depend significantly on the amount of

capacity that can be filled by external traffic. For instance, if external traffic fills the entire capacity

of each opportunity with certainty, then we can easily design an algorithm that achieves the same

value as OPT. In this case, it would not matter how internal traffic was allocated, since external

traffic alone will suffice to fill all capacity. Based on this observation, our performance metric will

11 Allowing OPT foreknowledge of the sign-up decisions of all external traffic is equivalent to assuming OPT faces an
arrival sequence where all external traffic arrives first, followed by internal traffic (maintaining the original arrival
order within each traffic source). We thoroughly analyze settings with such an arrival pattern in Section 4.1.
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be a function of both the online algorithm π as well as the expected fraction of capacity which can

be filled by external traffic, as formalized below.

Definition 2 (Effective Fraction of External Traffic) For a fixed instance I, the effective

fraction of external traffic (EFET) is the expected fraction of capacity which can be filled by external

traffic. We use β to denote the EFET, where

β(I) =

∑
i∈S E

[
min{ci,

∑
t∈Vext 1[ξt(i

∗
t ) = i]}

]∑
i∈S ci

. (1)

We emphasize that our definition for OPT ensures that it fills a β fraction of capacity with external

traffic in expectation, as OPT will never fill that capacity with internal traffic instead. For a given

β ∈ [0,1], we let Iβ be the set of all possible instances where the EFET is β. Having defined our

benchmark OPT and the parameter β, we are ready to define our performance metric. We will

evaluate the performance of any online algorithm via the competitive ratio parametrized by β.

Definition 3 (Competitive Ratio) The competitive ratio of an algorithm π for any effective

fraction of external traffic β ∈ [0,1] is given by:

CompRatio(π,β) = min
I∈Iβ

π(I)

OPT(I)
(2)

By taking the minimum value of this ratio over all instances in Iβ, the competitive ratio provides

a guarantee against even an adversarially-chosen instance.

To conclude this section, we revisit the connection with the online matching problems discussed

in Section 2. The competitive ratio is a standard metric in this literature (see, e.g., Mehta et al.

2007), though the competitive ratio is commonly taken with respect to all possible instances. (In

our setting, the domain of all possible instances is equivalent to the union over domains Iβ for all

β ∈ [0,1].) In this work, motivated by the nature of external traffic that constitutes a considerable

portion of traffic on some matching platforms, we explore how imposing structure on the problem

(in the form of the EFET β) impacts the achievable competitive ratio.

4. Results

We start by considering a special case where all external traffic arrives before any internal traffic in

Section 4.1. This special case provides intuition behind the shortcomings of known algorithms and

motivates the need for our Adaptive Capacity (AC) algorithm. Building on this intuition, in Section

4.2 we establish a family of lower bounds on the competitive ratio of AC in a general setting, and we

upper bound the competitive ratio of any online algorithm. Section 4.3 elaborates on the intuition

and implications of our results. Finally, Section 4.4 provides the proof sketch of our main result.
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4.1. Warm-up: External Traffic Arrives First

Let us first consider a setting where the platform observes all the external traffic before the arrival

of any internal traffic. Any recommendation algorithm would use the same amount of external

traffic as OPT, as we follow the convention that the platform cannot influence the decision of external

traffic. However, an online algorithm may make sub-optimal recommendations to internal traffic,

as it does not know which opportunities can be filled by future volunteers and which opportunities

cannot. In settings without external traffic, this leads to a “barrier” of 1−1/e, which is achievable

asymptotically as the minimum capacity c = mini∈[n] ci tends to infinity (Mehta et al. 2007).12

Building on this intuition, the following proposition establishes an upper bound on the competitive

ratio of any online algorithm.

Proposition 1 (Upper Bound when All External Traffic Arrives First) Suppose that all

external traffic arrives before internal traffic. Then, for any effective fraction of external traffic

β and any minimum capacity, no online algorithm can achieve a competitive ratio greater than

β+ (1−β)(1− 1/e).

The proof of Proposition 1 (which is presented in Appendix A.1) adjusts the hard instance

presented in Mehta et al. (2007) by appending external traffic at the beginning of the arrival

sequence, such that the EFET is equal to β.

Based on Proposition 1, one may ask: is it possible to design an online algorithm that achieves

this upper bound, at least asymptotically? Intuitively, the answer should be yes. As noted above,

in the absence of external traffic, it is possible to design algorithms that asymptotically achieve a

competitive ratio of 1− 1/e. Building on such results, we should be able to design an algorithm

that first fills (on average) a β fraction of capacity with external traffic, and then – based on the

capacities that remain – treats the internal traffic portion of the problem as a typical instance of

online matching, for which we can achieve a 1−1/e fraction of the offline solution OPT. Overall, this

would lead to an asymptotic competitive ratio of at least β+ (1− β)(1− 1
e
), as desired. However,

a naive approach that only relies on existing algorithms does not achieve such a competitive ratio.

4.1.1. The failure of MSVV. A prime candidate to achieve this level of performance is the well-

known algorithm introduced in Mehta et al. (2007), commonly referred to as MSVV. This algorithm

achieves, asymptotically, the best-possible competitive ratio of 1 − 1/e for our online matching

problem in the absence of external traffic, i.e., when β = 0.

The idea behind the MSVV algorithm is very simple. To balance the trade-off between the upside

of recommending the opportunity with the highest conversion probability and the downside of

12 Henceforth, we use “asymptotically” to refer to the regime where c→∞. Notably, a competitive ratio of 1−1/e is
not attainable in the finite-capacity regime (Mehta and Panigrahi 2012).
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Algorithm 1 MSVV Algorithm (Mehta et al. 2007)

Initialize MSVVi,0 = 0, FRMSVV
i,0 = 0 for all i∈ [n].

for t∈ [T ] do

if volunteer t∈ Vext then

Recommend SMSVV
t = i∗t (i.e., recommend the unique targeted opportunity).

else

Recommend SMSVV
t ∈ argmaxS∈[n]∪{0}µS,t ·ψ(FRMSVV

S,t−1), where ψ is defined in (3).

for i∈ [n] do

MSVVi,t = min{ci,MSVVi,t−1 +1[ξt(S
MSVV
t ) = i]}; FRMSVV

i,t = MSVVi,t/ci

reaching an opportunity’s capacity before the end of the horizon, MSVV weighs each opportunity’s

conversion probability with the following decreasing trade-off function of the opportunity’s fill rate:

ψ(FR) = 1− exp(FR− 1). (3)

Opportunity i’s fill rate under MSVV after the arrival of volunteer t (denoted FRMSVV
i,t ) is the fraction of

opportunity i’s capacity (ci) that is filled at that time. We formally present MSVV in Algorithm 1.13

Surprisingly, MSVV does not achieve the desired competitive ratio of β + (1− β)(1− 1
e
) in the

setting where all external traffic comes first, as established by the following proposition.

Proposition 2 (Upper Bound on MSVV when All External Traffic Arrives First)

Suppose external traffic arrives before internal traffic. Then for any effective fraction of external

traffic β and any minimum capacity, the competitive ratio of MSVV is at most

1− 1− α̂1

exp (exp(−α̂1/(1− α̂1)))
(4)

where α̂1 is the unique solution in [0,1] to β = α̂1 + (1− α̂1)
(

exp
(
− α̂1/(1− α̂1)

)
− 1
)

.

In Figure 2a, we illustrate the upper bound on the competitive ratio of MSVV given by (4). There is

a significant gap between the upper bound on the competitive ratio of MSVV (dashed red curve) and

the potentially-achievable frontier characterized in Proposition 1 (solid blue line). The shortcomings

of MSVV stem from its definition of an opportunity’s fill rate, i.e., FRMSVV
i,t = MSVVi,t/ci, which accounts

for internal and external traffic in an identical fashion. Under MSVV, the opportunities that receive

sign-ups from external traffic will have strictly positive fill rates when internal traffic arrives, and

thus will be de-prioritized. The proof of Proposition 2 (presented in Appendix A.2) builds on

this intuition: we design a family of instances in which MSVV (sub-optimally) withholds internal

13 If there are multiple recommendations that satisfy MSVV’s optimality criteria, we follow the convention of recom-
mending the one with the lowest index.
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traffic from opportunities that initially receive external traffic. In these instances, for β ∈ (0,1),

the amount of capacity filled by internal traffic under MSVV is less than a 1− 1/e factor of the

amount of capacity filled by internal traffic under OPT. Consequently, it would appear that in order

to achieve a competitive ratio of β+ (1−β)(1− 1
e
), we must design an algorithm that incorporates

the source of traffic into its decision-making. To that end, we next introduce our Adaptive Capacity

(AC) algorithm, which accounts for the amount of filled capacity separately based on source.

4.1.2. Accounting for the source of traffic: the Adaptive Capacity algorithm. Similar

to MSVV, the AC algorithm uses the exponential trade-off function ψ, as defined in (3), and it

recommends the opportunity with the greatest weighted conversion probability, i.e., the opportunity

i that maximizes µi,t ·ψ(FRi,t−1).
14 However, AC crucially differs from MSVV in its definition of an

opportunity’s fill rate. The fill rate definition used by MSVV aggregates all sign-ups in the numerator;

that is, it defines an opportunity’s fill rate as FRMSVV
i,t = (MSVVi,t)/ci. By contrast, AC aggregates

sign-ups separately based on source, using counters ACexti,t and ACinti,t . It then removes any external

traffic sign-ups from the total capacity (the denominator), i.e., FRi,t = ACinti,t /
(
ci− ACexti,t

)
. In other

words, every time capacity is filled by external traffic, we adaptively reduce the capacity of that

opportunity by one. We formally describe AC in Algorithm 2.

Algorithm 2 AC Algorithm

Initialize ACexti,0 = 0, ACinti,0 = 0, and FRi,0 = 0 for all i in [n].

for t in [T ] do

if volunteer t in Vext then

Recommend SAC
t := j, where j = i∗t (i.e., recommend the unique targeted opportunity).

ACextj,t = min{cj − ACintj,t ,AC
ext
j,t−1 +1[ξt(j) = j]}; ACintj,t = ACintj,t−1

else

Recommend SAC
t := j, where j ∈ argmaxS∈[n]∪{0}µS,t ·ψ(FRS,t−1), where ψ is defined in (3).

ACintj,t = min{cj − ACextj,t ,AC
int
j,t−1 +1[ξt(j) = j]}; ACextj,t = ACextj,t−1

FRj,t = ACintj,t /(cj − ACextj,t )

for i in [n] \ {j} do

ACexti,t = ACexti,t−1; ACinti,t = ACinti,t−1; FRi,t =FRi,t−t

In the following, we establish that the competitive ratio of AC is asymptotically optimal when

external traffic arrives before internal traffic. Intuitively, in this warm-up setting, AC implements

the solution discussed in the beginning of this section: it reduces capacities based on the number of

14 If there are multiple recommendations that satisfy AC’s optimality criteria, we follow the convention of recommend-
ing the one with the lowest index.
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sign-ups from external traffic and then, for internal traffic, it runs MSVV on the remaining capacities.

Building on this intuition, the following proposition lower-bounds the competitive ratio of AC.

Proposition 3 (Lower Bound on AC when All External Traffic Arrives First) Suppose

all external traffic arrives before internal traffic. Then for any effective fraction of external traffic

β and any minimum capacity c, the competitive ratio of AC is at least β+ (1−β)(1− 1/e)− c−1.

The lower bound given in Proposition 3 (which we prove in Appendix A.3) asymptotically

achieves the upper bound established in Proposition 1 (shown by Figure 2a).

To conclude this section, we note that even though this warm-up setting is unrealistic and

studied solely to develop intuition, it is roughly equivalent to the more realistic setting where the

arrival order of the external and internal traffic can be arbitrarily mixed, but the amount and

type of external traffic can be accurately predicted in advance. In such a setting, a variant of

AC that reduces capacities by the expected amount of sign-ups from external traffic and then, for

each internal traffic arrival, runs MSVV on the remaining capacities will be asymptotically optimal.

Intuitively, this is akin to the AC algorithm in the warm-up setting, which reduces capacities by

the realized amount of sign-ups from external traffic. The difference between the expected and the

realized amount of capacity filled by external traffic has a vanishing impact on the competitive ratio

in the asymptotic regime. This more realistic setting illustrates the need to differentiate internal

and external traffic beyond the warm-up case and motivates us to analyze AC in an even more

general setting.

4.2. Performance of the AC Algorithm Under More General Arrivals

The previous section focused on a setting where external traffic arrives to the platform first, and we

observed that the competitive ratio of AC significantly improves upon the fundamental barrier of

1−1/e (which we remind is the upper-bound in the absence of external traffic). We now investigate

the competitive ratio of AC when the arrival sequence of volunteer types is completely unknown.

To that end, we will compare the competitive ratio of AC to an upper bound on the competitive

ratio of any online algorithm, as a function of the EFET β.

In contrast with the setting previously described, the AC algorithm cannot always observe the

sign-ups from external traffic before making recommendations for internal traffic. As a consequence,

when internal traffic arrives, the AC algorithm may inadvertently recommend an opportunity which

could be filled entirely by later-arriving external traffic. This is not only a limitation of the AC

algorithm: no online algorithm has access to information about future external traffic. However, the

information available to OPT is unchanged: it still has a priori knowledge of the amount of capacity

that can be filled by external traffic. We should intuitively expect the achievable competitive
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ratio will decrease in this setting (compared to the warm-up setting), as one could construct hard

examples where valuable information about external traffic is not revealed until the end of the

arrival sequence (e.g., if all external traffic arrives after all internal traffic).15 Building on this

intuition, we modify the hard instance of Mehta et al. (2007) by replacing the tail end of the

arrival sequence with carefully-designed external traffic. This modification allows us to establish

the following family of upper bounds on the competitive ratio of any online algorithm.

Theorem 1 (Upper Bound on Competitive Ratio) For any effective fraction of external

traffic β and any minimum capacity, no online algorithm can achieve a competitive ratio better

than max{1− 1/e,1 +β log(β)}.

We illustrate the upper bound as a function of the EFET β in Figure 2b (blue curve), and

we formally prove this result in Appendix A.4. Naturally, one wonders whether the AC algorithm

can come close to attaining this upper bound. We find that the answer depends in part on the

maximum conversion probability ratio, a quantity we formally define below.

Definition 4 (Maximum Conversion Probability Ratio) For each volunteer t, let St denote

the subset of opportunities i for which µi,t > 0.16 The conversion probability ratio (CPR) for

volunteer t is given by
maxi∈St µi,t
mini∈St µi,t

. The maximum conversion probability ratio (MCPR), denoted

by σ, is the maximum CPR across all volunteers, i.e.

σ= max
t∈[T ]

(
maxi∈St µi,t
mini∈St µi,t

)
(5)

Before providing intuition behind the dependence on the MCPR σ, we first present the main result

of this section, which is a family of lower bounds on the competitive ratio of the AC algorithm.

These bounds are parameterized by the EFET β, the minimum capacity c, and the MCPR σ.

Theorem 2 (Lower Bound on AC’s Competitive Ratio) Let the smallest capacity be given

by c and let the maximum conversion probability ratio be at most σ. Then, for any effective fraction

of external traffic β, the competitive ratio of the AC algorithm defined in Algorithm 2 (with ψ as

defined in Eq. (3)) is at least f(β, c,σ) = max{β, z∗}, where

z∗ = min
z∈[0,1]

z (6)

subject to z ≥ e−1/c(1− 1/e)

z ≥ e−1/cğ (max{0, β−σ+ z}, z−max{0, β−σ+ z}) ,
15 We remark that even though many hard instances involve all external traffic arriving after all internal traffic, the
two algorithms that we consider (i.e., AC and MSVV) do not exhibit performance that is monotonic in the arrival order
of external traffic vis-à-vis internal traffic.

16 Without loss of generality, we assume that for all volunteers, there is at least one opportunity for which they have
a strictly positive conversion probability. Otherwise, we can simply remove that volunteer and re-index.
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Figure 2 In the asymptotic regime, we present: a lower bound on the CR of AC and upper bounds on the CR of

MSVV and any online algorithm (a) when all external traffic arrives first (Propositions 1, 2, and 3), and (b) under

general arrivals (Theorems 1 and 2 and Proposition 6 in Appendix A.5). (c) The lower bound on the competitive

ratio of AC for various values of σ under general arrivals.

and ğ(x1, x2) denotes the lower convex envelope of g(x1, x2) over the domain D= {(x1, x2)∈R2
≥0 :

x1 +x2 ≤ 1},17 where

g(x1, x2) = 1− 1

e
+x1 + (1−x1)ψ

(
x2

1−x1

)
−ψ (x2) . (7)

We next discuss the key takeaways from our main results; we defer a proof sketch of Theorem 2 to

Section 4.4, with the remaining details provided in Appendix A.6.

4.3. Discussion of Results

Throughout this section, we restrict our attention to the asymptotic regime where c approaches

infinity.18 We begin to unpack Theorem 2 by first focusing on instances where σ= 1. This class of

instances includes the standard online B-matching problem (Kalyanasundaram and Pruhs 2000),

where each volunteer has deterministic binary compatibility with an arbitrary subset of opportu-

nities. In Figure 2b, we plot the lower bound on the competitive ratio of the AC algorithm when

σ= 1 (dotted purple line) in comparison to the upper bound on the competitive ratio of any online

algorithm (solid blue line).19 There is minimal gap between these lower and upper bounds, which

suggests that the guarantee provided by our AC algorithm is close to the best-possible one for any

EFET β ∈ [0,1]. This is particularly intriguing because our AC algorithm does not need to know the

value of β in order to achieve a near-optimal guarantee for that EFET (in settings where σ= 1).

Although we have demonstrated the superior competitive ratio of AC compared to MSVV when

external traffic comes first (Propositions 2 and 3), it is natural to wonder if AC outperforms MSVV

17 The lower convex envelope of a function g over a domain D is the supremum of all convex functions that are less
than or equal to g on domain D.

18 As evident from (6), the value of c only impacts our lower bound via e−1/c, which is similar to the dependence on
minimum capacity found in prior literature (see, e.g., Buchbinder et al. 2007, Goyal et al. 2020).

19 We note that the upper bound holds for any minimum capacity c as well as any MCPR σ.
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in the general case. In Proposition 6 (presented in Appendix A.5), we rule out this possibility by

providing an upper bound on the competitive ratio of MSVV (shown by the dashed red curve in

Figure 2b). The upper bound on MSVV is strictly below our lower bound on AC (by a multiplicative

factor up to 3.9%) for β ∈ [0.48,0.94]. Outside of that range, the upper bound on MSVV and the lower

bound on AC are essentially indistinguishable (the two differ by at most 0.1%). This comparative

analysis suggests that in the regime where σ = 1, differentiating between internal and external

traffic (by using the AC algorithm) leads to an improved competitive ratio.

Maintaining (for now) our focus on settings where σ= 1, we next aim to better understand the

relationship between the EFET β and our lower bound on the competitive ratio of AC. Similar to

our tight bound in the setting where external traffic arrives first (as given by Propositions 1 and 3

in Section 4.1), the lower bound on the competitive ratio of the AC algorithm is non-decreasing in β.

However, in the previous setting, the competitive ratio was linearly increasing in β. In contrast, in

this general setting, no online algorithm can break the barrier of 1−1/e unless β exceeds β∗ = 1/e.

As the dependence on e might suggest, there is a nice relationship between the fundamental

barrier of 1− 1/e (which we remind is the upper-bound in the absence of external traffic) and the

threshold β∗ on the EFET, as we next explain. Whenever AC generates a sign-up from external

traffic, we know that OPT could not have made a “better” decision because external traffic (by

definition) targets that particular opportunity. By leveraging the value of AC’s “correct” decisions,

we can demonstrate that AC has a competitive ratio strictly above 1 − 1/e if it fills a strictly

positive amount of capacity with external traffic. Unfortunately, when the EFET is less than β∗,

we cannot guarantee that AC fills any capacity with external traffic.

To see why, consider the following informal argument: Suppose volunteers have conversion prob-

abilities of either 0 or 1, and suppose OPT allocates all volunteers and exactly fills all capacities.

Even though AC attains the best-possible competitive ratio of 1− 1/e in the absence of external

traffic, there exists at least one instance where it “wastes” a β∗ = 1/e fraction of volunteers (i.e.,

AC cannot fill capacity with those volunteers). For any EFET β ≤ β∗, we can construct a nearly-

identical instance where the set of “wasted” volunteers includes all the external traffic. Indeed,

under the AC algorithm, all external traffic is wasted on the instances which establish the upper

bound of Theorem 1 for β ∈ [0, β∗]. However, when the EFET β strictly exceeds β∗, AC must fill

a strictly positive amount of capacity with external traffic, which enables us to prove that AC’s

competitive ratio breaks the 1− 1/e barrier (as we elaborate on in Section 4.4).

The informal argument of the prior paragraph falls apart, however, when applied to settings

where volunteers may have different conversion probabilities for different (compatible) opportuni-

ties (i.e., where the MCPR σ > 1). In such settings, achieving a competitive ratio of 1− 1/e is no

longer a sufficient condition to ensure that the fraction of un-allocated volunteers is at most β∗.
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Even when β > β∗, the fraction of un-allocated volunteers may include all the external traffic. As

a consequence, we can no longer guarantee that the AC algorithm will break the 1−1/e barrier for

every EFET greater than β∗ = 1/e. We illustrate this challenge with the following example:

Example 1 (Limitation of AC for Unbounded σ) Consider an instance with two opportuni-

ties (1 and 2) with capacities c1 =N and c2 = 1
e−1N for sufficiently large N . There are 2N volun-

teers, and the first N volunteers are internal traffic with conversion probabilities given by

µ1,t = 1, µ2,t =
1− exp

(
t−1
N
− 1
)

1− exp(−1)
− 1

2N
.

The remaining N volunteers are external traffic for opportunity 1 with conversion probabilities of 1.

In Example 1, the EFET β = 1− 1/e, as the capacity of opportunity 1 can be entirely filled with

external traffic. The minimum capacity c and the MCPR σ are both arbitrarily large. (To see

the latter, note µ1,N = 1 while µ2,N = o(1).)20 In this instance, OPT will recommend opportunity 2

to all internal traffic, and in expectation opportunity 2 will receive 1
e−1N − o(N) sign-ups. Then,

external traffic arrives and fills opportunity 1, which means the amount of filled capacity under

OPT is e
e−1N − o(N).

In sharp contrast, AC will recommend opportunity 1 to all internal traffic volunteers, because

the conversion probabilities in Example 1 are constructed such that µ1,tψ(FR1,t)>µ2,tψ(0) for all

t∈ [N ]. These internal traffic volunteers completely fill opportunity 1. Consequently, no capacity is

filled by external traffic under AC, even though the EFET is 1− 1/e. In total, the amount of filled

capacity under AC is N . Thus, in this example, the ratio between the expected value of AC and the

expected value of OPT approaches 1− 1/e, despite the fact that the EFET β = 1− 1/e.

Example 1 demonstrates that our analysis of the AC algorithm is tight for this set of parameters:

it establishes an upper bound on the competitive ratio of the AC algorithm that matches the

lower bound of Theorem 2 when β = 1− 1/e and in the limit as both c and σ approach infinity.

Furthermore, this example sheds light on the challenges that arise when the MCPR exceeds 1. In

line with this intuition, in Figure 2c, we show that AC’s guarantee is decreasing in the MCPR σ.

Having discussed the comparative statics of our main result with respect to the EFET β and the

MCPR σ, we now provide an overview of our proof technique.

20 For two functions d, l : N→R, l(n) = o(d(n)) if limn→∞
l(n)
d(n)

= 0.
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4.4. Proof Sketch of Theorem 2.

In this section, we present the proof sketch of Theorem 2. We start by noting that the lower bound

on the competitive ratio of the AC algorithm, f(β, c,σ), is the maximum of two terms, meaning

that each term represents a lower bound on the competitive ratio. To formally establish Theorem

2, we prove that the first term, β, is a lower bound on the competitive ratio (Lemma 1); then, we

prove that the second term, z∗, is a lower bound on the competitive ratio (Lemma 2). The latter

proof is more involved, and requires the introduction of path-based pseudo-rewards.

Lemma 1 (Lower Bound of β on f(β, c,σ)) Let the smallest capacity be given by c and let the

maximum conversion probability ratio be at most σ. Then, for any effective fraction of external

traffic β, the competitive ratio of the AC algorithm defined in Algorithm 2 (with ψ as defined in

(3)) is at least β.

Proof: The proof of Lemma 1 is immediate: we simply note that AC always recommends the

targeted opportunity to external traffic. Applying the definition of the EFET (Definition 2) then

ensures that at least a β fraction of capacity is filled in expectation. �

Lemma 2 (Lower Bound of z∗ on f(β, c,σ)) Let the smallest capacity be given by c and let the

maximum conversion probability ratio be at most σ. Then, for any effective fraction of external

traffic β, the competitive ratio of the AC algorithm defined in Algorithm 2 (with ψ as defined in

(3)) is at least z∗ (with z∗ as defined in (6)).

Proof: The proof of Lemma 2 is fairly intricate, and our analysis leverages the LP-free approach

developed in Goyal and Udwani (2019) and Goyal et al. (2020). This approach has proven useful in

accounting for post-allocation stochasticity, e.g., stochastic rewards (as in Goyal and Udwani 2019)

or stochastic usage duration (as in Goyal et al. 2020). In our setting with multi-channel traffic, we

modify the approach to separately account for sign-ups based on their source, as the (potentially

stochastic) amount of sign-ups from external traffic crucially impacts the guarantee that can be

provided by the AC algorithm.

Central to this approach is the concept of path-based pseudo-rewards, i.e., values that are defined

so as to keep track of the rewards that accrue during a particular run of an online algorithm

relative to OPT. It is important to highlight that pseudo-rewards are defined purely for accounting

purposes; in other words, they are not necessarily equivalent to the rewards of the algorithm on

that particular run. (Nor are the pseudo-rewards equivalent to the dual solution of the underlying

linear program, which is another commonly-used approach in the literature. See, e.g., Buchbinder

et al. 2009.) These pseudo-rewards assist in the comparison between the online algorithm and OPT

and ultimately allow us to establish a lower bound of z∗ on the competitive ratio.
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We divide the proof of Lemma 2 into three steps. In Step (1), we define appropriate pseudo-

rewards for our setting. Our construction of pseudo-rewards departs from the approach of Goyal

et al. (2020), as we define pseudo-rewards that are source-dependent. In Step (2), we use these

pseudo-rewards to establish a lower bound on the expected value of AC that depends (in part)

on the expected value of OPT (Lemmas 3 and 4). In contrast to the approach taken in Goyal

et al. (2020), we cannot formulate a lower bound on the pseudo-rewards for each opportunity,

as the amount of external traffic can be heterogeneous across opportunities. Instead, our more

complex lower bound (on the expected sum of all pseudo-rewards) eventually enables us to break

the competitive ratio barrier of 1−1/e, but doing so requires an additional step. In this final step,

Step (3), we construct a factor-revealing mathematical program (see Table 1) based, in part, on

the lemmas of the previous step. Through analysis of this program, we place a lower bound of z∗

on the competitive ratio of the AC algorithm (Lemmas 5 and 6).

Step 1: Defining Pseudo-Rewards

We begin by fixing a problem instance I. We then define a sample path ω = {ω1, . . . ,ωT}, as

the realizations of random variables that govern volunteer choices in this instance.21 Formally, we

interpret ωt as a vector of length n, where the ith component of ωt (denoted ωi,t) indicates volunteer

t’s sign-up decision if the platform were to recommend opportunity i.22 For the fixed instance I
and for any fixed sample path ω, we will define pseudo-rewards Lt(I,ω) for each volunteer t∈ [T ],

along with pseudo-rewards Ki(I,ω) for each opportunity i ∈ [n]. Henceforth, to ease exposition,

we suppress the dependence on the instance and the sample path.

Our pseudo-rewards Lt and Ki will depend on an opportunity’s fill rate under AC along this fixed

sample path, i.e., FRi,t =
ACinti,t

ci−ACexti,t
, as well as on the realizations of volunteers’ sign-up decisions

under both AC (denoted ξt(S
AC
t )) and OPT (denoted ξt(S

OPT
t )).23 Recall our convention that any

algorithm (including AC) always recommends the targeted opportunity to external traffic. To ensure

that we do not count sign-ups that exceed the capacity of an opportunity, we define ξ̃t(S
AC
t ) as the

opportunity that volunteer t fills capacity of under AC. To be precise, if opportunity ξt(S
AC
t ) has

remaining capacity at time t, then ξ̃t(S
AC
t ) = ξt(S

AC
t ); otherwise, ξ̃t(S

AC
t ) = 0.

Moreover, for this fixed instance I and along this fixed sample path ω, let V0 represent the

subset of internal traffic for which OPT recommends opportunity 0, i.e., OPT does not recommend

21 Fixing a set of realizations ω, the path of any deterministic algorithm (such as the AC algorithm) is uniquely
determined. Hence, we refer to ω as a sample path. That said, we emphasize that these realizations determine all
possible choices for volunteers, not just the choices along the resulting sample path (i.e., the choices that result from
the recommendations made by an algorithm).

22 If the platform recommends opportunity 0, then the volunteer deterministically does not view (or sign up for) any
opportunity.

23 As noted above, we are suppressing these variables’ dependence on the instance and the sample path. We emphasize
that for a fixed instance and sample path, these variables are all deterministic.
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any opportunity.24 Based on our convention for OPT introduced in Definition 1, a volunteer is in V0

if and only if all compatible opportunities have already reached their capacity for internal traffic.

(Recall that OPT knows a priori how much capacity will be filled by external traffic as it knows the

realizations of those volunteers’ sign-up decisions. This capacity is effectively reserved for external

traffic, and only the remaining capacity will be filled by internal traffic. See Definition 1.)

With the above definitions, we are now ready to define the pseudo-rewards Lt and Ki.

Lt =

{∑
i∈[n]ψ(FRi,t−1)1[ξ̃t(S

AC
t ) = i], t∈ Vext ∪V0∑

i∈[n]ψ(FRi,t−1)1[ξt(S
OPT
t ) = i], t∈ V int \ V0

(8)

Ki =
∑
t∈[T ]

(1−ψ(FRi,t−1))1[ξ̃t(S
AC
t ) = i] (9)

For intuition behind our design of the volunteers’ pseudo-rewards (i.e., the two cases in (8)), recall

that our goal is to bound the difference between the values of AC and OPT, which depends on the

number of times OPT makes a “better” recommendation than AC. Whenever external traffic arrives,

OPT will recommend the targeted opportunity, which cannot be better than the recommendation

made by AC. Similarly, for internal traffic where OPT does not recommend an opportunity (i.e., for

t∈ V0), then the recommendation made by OPT cannot be better, in the sense that the objective is

(weakly) increasing in the total number of sign-ups. In contrast, when internal traffic arrives and OPT

does make a recommendation, then this recommendation can be “better” than the recommendation

made by AC. Hence, we define different pseudo-rewards for these arriving volunteers.

Step 2: Lower-bounding the Value of AC

This step of the proof involves two lemmas. First, in Lemma 3, we use the optimality criteria for

the recommendations provided by the AC algorithm to show that the expected sum of the Lt and

Ki pseudo-rewards is a lower bound on the expected value of AC. (We use AC to denote the value of

the AC algorithm along a fixed sample path for a fixed instance, again suppressing the dependence

for ease of exposition.) Then, in Lemma 4, we use properties of the function ψ (as defined in

(3)) to lower bound the expected sum of these pseudo-rewards with a function that depends on

the quantity and the source of sign-ups under both OPT and AC. By combining these lemmas, we

establish a (non-linear) relationship between the expected value of AC and that of OPT.

Lemma 3 (Lower Bound on AC via Pseudo-rewards) For any instance I, the expected sum

of all of the pseudo-rewards is a lower bound on the expected value of AC, i.e.,

Eω[AC] ≥ Eω

[∑
t∈[T ]

Lt +
∑
i∈[n]

Ki

]
, (10)

where Lt and Ki are defined in (8) and (9), respectively.

24 The set V0 is a function of the instance and the sample path, but we remind that we are suppressing that dependence.
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The proof of Lemma 3 crucially relies on the fact that whenever internal traffic arrives, AC recom-

mends the opportunity which maximizes µi,tψ(FRi,t−1). Due to stochasticity in volunteers’ realized

sign-up decisions, this inequality holds only in expectation over all sample paths. We present the

full proof in Appendix A.6.1.

In the subsequent lemma, we establish a lower bound on the expected sum of the pseudo-rewards.

Recall that, for a fixed instance and sample path, we use counters such as ACinti,T to indicate the

number of sign-ups for opportunity i made by volunteers t∈ V int under the AC algorithm. Similarly,

we will use AC0i,T to represent the amount of opportunity i’s capacity filled by volunteers t∈ V0 under

the AC algorithm. Mathematically, we have AC0i,T =
∑

t∈V0 1[ξ̃t(S
AC
t ) = i]. Furthermore, to mirror

our notation for the AC algorithm, we define OPTinti,T (resp. OPTexti,T ) as the amount of opportunity i’s

capacity filled by internal traffic (resp. external traffic) under OPT at the end of the horizon.

Lemma 4 (Lower Bound on Pseudo-Rewards) For any instance I, we have the following

lower bound on the expected sum of all of the pseudo-rewards:

Eω

∑
t∈[T ]

Lt +
∑
i∈[n]

Ki

 ≥ e−1/cEω

∑
i∈[n]

ACexti,T + AC0i,T + OPTinti,T ·ψ
(

ACinti,T

ci− ACexti,T

)

+ci

(
1−ψ

(
ACinti,T − AC0i,T

ci

)
− 1/e

)]
, (11)

where Lt and Ki are defined in (8) and (9), respectively.

Though we present (11) in expectation over all sample paths, in the proof of Lemma 4 we show

that the inequality holds along each sample path by separately bounding the sum of the Lt pseudo-

rewards and the sum of the Ki pseudo-rewards. The proof relies on properties of the function ψ,

and the full proof details can be found in Appendix A.6.2.

Step 3: Bounding the Competitive Ratio of AC

The final step of the proof of Lemma 2 involves the creation of an instance-specific, factor-revealing

mathematical program (MP) that serves as a lower bound on the ratio between Eω[AC] and Eω[OPT]

on that instance. As we later elaborate upon, the program (MP) for instance I is designed such

that we can construct a feasible solution using the outputs of AC and OPT on that instance.25 The

constraints are inspired by the lower bound on the expected value of AC established in Step 2 as

well as the physical constraints of the problem. The program (MP) partly consists of decision

variables specific to each sample path ω that can occur in instance I. We use Ω to denote this set

of sample paths, which has an associated probability measure induced by the instance I.26

25 We emphasize that (MP) depends on the instance I, even though we suppress that dependence.

26 We note that the probability measure is determined by a set of independent Bernoulli random variables.
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We analyze (MP) via two additional lemmas. First, in Lemma 5, we show that the optimal value

of (MP) is a lower bound on the ratio between the expected value of AC and the expected value of

OPT in instance I. To establish a lower bound on the competitive ratio of the AC algorithm, it then

suffices to lower-bound the value of (MP) for all instances I ∈ Iβ. To that end, in Lemma 6, we

place a lower bound of z∗ on the value of (MP), where we remind that z∗ only depends on three

properties of the instance I: the EFET β, the minimum capacity c, and the MCPR σ.

Table 1 Definition of the mathematical program (MP).

Given an instance I, the inputs to (MP) are the set of opportunities S, the EFET β, the MCPR σ,
and the set of feasible sample paths Ω, along with its associated probability measure.

(MP) uses the set of variables ~x∈R3×n×|Ω|
≥0 and ~y ∈R2×n×|Ω|

≥0 \~0, along with z ∈ [0,1]

min
~x,~y, z

z (MP)

s.t. ∀i,ω, ci ≥ y1,i,ω + y2,i,ω (i) ci ≥ x1,i,ω +x2,i,ω (ii) x2,i,ω ≥ x3,i,ω (iii)

ci = x1,i,ω +x2,i,ω OR x1,i,ω = y1,i,ω (iv)

Eω

[∑
i∈[n] x1,i,ω +x2,i,ω

]
≤ z

∑
i∈[n] ci (v)

Eω

[∑
i∈[n] x1,i,ω +x3,i,ω

]
≥ (β−σ+ z)

∑
i∈[n] ci (vi)

Eω

[∑
i∈[n] x1,i,ω +x3,i,ω + y2,i,ω ·ψ

(
x2,i,ω

ci−x1,i,ω

)
+ ci

(
1−ψ

(
x2,i,ω−x3,i,ω

ci

)
− 1/e

)]
≤ e1/czEω

[∑
i∈[n] y1,i,ω + y2,i,ω

]
(vii)

Lemma 5 (Lower-Bound on Ratio of Expected Values via (MP)) For any instance I,

the ratio between the expected value of AC (i.e., Eω[AC]) and the expected value of OPT (i.e., Eω[OPT])

on instance I is at least the optimal value of (MP).

To prove Lemma 5, we consider the following candidate solution:

x1,i,ω = ACexti,T , x2,i,ω = ACinti,T , x3,i,ω = AC0i,T ,

y1,i,ω = OPTexti,T , y2,i,ω = OPTinti,T , z =
Eω[AC]

Eω[OPT]

Such a solution has an objective value equal to the ratio Eω[AC]/Eω[OPT] in (MP), and by construc-

tion it satisfies all constraints. We formally prove the feasibility of this solution in Appendix A.6.3.

For intuition, note that the first two constraints in (MP) represent physical constraints of the prob-

lem – for any opportunity i, the amount of filled capacity cannot exceed ci. The third constraint

is satisfied according to the definition of our candidate solution and noting that V0 ⊆ V int. The

fourth constraint encodes the following property of AC: for any opportunity i, AC fills less capacity
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with external traffic compared to OPT only if opportunity i has already reached capacity under AC.

The fifth constraint holds by the definition of z and the fact that Eω[OPT]≤∑i∈[n] ci. The sixth

constraint establishes a lower bound on the capacity filled by volunteers in Vext and V0, which we

remind are the two sets of volunteers for which OPT could not have made a better decision than AC

(see (8) and the following discussion). Establishing this lower bound is technically involved, and

we defer the details to Appendix A.6.3. For now, we simply highlight that the bound depends on

the EFET β, the MCPR σ, and the ratio between the expected values of AC and OPT. The seventh

and final constraint is satisfied as a direct consequence of Lemmas 3 and 4 in Step 2.

In general, (MP) is non-convex. Despite this, in the following lemma, we are able to bound the

optimal value of (MP) for any instance.

Lemma 6 (Lower Bound on the Optimal Value of (MP)) For any instance I, the optimal

value of (MP) is at least z∗, where z∗ is defined in (6) in the statement of Theorem 2.

The proof of Lemma 6 is mainly algebraic and relies on repeatedly relaxing the program’s

constraints and restricting its domain until we can ultimately establish a lower bound of z∗. We

defer the details to Appendix A.6.4. In combination, the two lemmas of Step 3 establish a lower

bound on the ratio Eω[AC]/Eω[OPT] for any instance I ∈ Iβ, where the bound depends on only the

EFET β, the minimum capacity c, and the MCPR σ.

Together, these three steps prove Lemma 2, namely, that z∗ is a lower bound on the competitive

ratio of the AC algorithm. In combination with Lemma 1, we have shown that the competitive ratio

of the AC algorithm is at least f(β, c,σ), as defined in the statement of Theorem 2. �

5. Model Extensions

In many practical settings, platforms can provide more than one recommendation to internal traffic,

often in the form of a ranking. Here, we discuss the ways in which our model and results can

generalize to such settings, which we henceforth refer to as the ranking setting.

We begin this section by describing how we augment the model of Section 3. Upon the arrival

of an internal traffic volunteer, we now allow the platform to present a ranking of opportunities

~S ∈ SR, instead of a single recommendation.27 The volunteer views (at most) one opportunity from

this ranked subset.28 As before, the volunteer will sign up for the viewed opportunity with their

pair-specific conversion probability. We use φi,t(~S) to denote the probability that volunteer t signs

up for opportunity i when presented with the ranking ~S. (We augment each volunteer’s type to

27 We allow the domain of possible rankings SR to consist of arbitrary ranked subsets of opportunities. We only
require that it includes the singleton {0}, which deterministically results in no sign-up from that volunteer.

28 For external traffic, we continue to follow the convention that any algorithm must recommend the single targeted
opportunity i∗t , which is then directly viewed by the volunteer.
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include any parameters necessary to fully specify these probabilities for every possible ranking.)

We use the random variable ξt(~S) to denote the volunteer’s sign-up decision when presented with

the ranking ~S, which is either 0 or the opportunity viewed by the volunteer.

Our benchmark OPT (see Definition 1) generalizes to the ranking setting by simply recommending

the optimal ranked subset of opportunities to arriving internal traffic, which can again be found by

solving a dynamic program of exponential size.29 Likewise, the AC algorithm naturally generalizes

to an algorithm that we denote by AC-R. The AC-R algorithm follows exactly the same steps as

the AC algorithm (see Algorithm 2), except instead of recommending the single opportunity i that

maximizes µi,tψ(FRi,t−1), the AC-R algorithm recommends the ranking ~SAC-R
t that satisfies

~SAC-R
t ∈ argmax~S∈SR

∑
i∈[n]

φi,t(~S) ·ψ(FRi,t−1). (12)

Henceforth, we assume that the platform can efficiently solve (12), which is a common assumption

in the literature (Golrezaei et al. 2014, Gong et al. 2021). Given this assumption, we are able to

establish results that are similar to Theorem 2, as formalized in the following proposition.

Proposition 4 (Lower Bound on the Competitive Ratio of AC-R) Let the smallest capac-

ity be given by c. Then, for any effective fraction of external traffic β, the competitive ratio of AC-R

algorithm is at least max{β, e−1/c(1− 1/e)}.

This lower bound on the competitive ratio of the AC-R algorithm is numerically equivalent to

the lower bound established in Theorem 2 when the MCPR σ exceeds e− 1 (beyond which the

lower bound is constant in σ). The intuition developed in Section 4.3 applies in this setting, too:

we cannot guarantee that the AC-R algorithm fills any capacity with external traffic unless the

EFET is sufficiently large. In fact, the instance of Example 1 is a special case of the ranking setting

(where the platform recommends one opportunity which the volunteer deterministically views).

Thus, the lower bound of Proposition 4 cannot be improved, at least for that set of parameters

(β = 1− 1/e, c→∞, σ→∞). Furthermore, in the ranking setting, we cannot necessarily improve

our result even when the MCPR is bounded. In our base model, the MCPR σ bounds the “relative

value” of two different (non-empty) recommendations (i.e., the ratio of their expected number of

sign-ups). However, in the ranking setting, the “relative value” of two different recommendations

can be quite large, regardless of the MCPR. We defer the proof of Proposition 4 to Appendix B.1.

Though the result of Proposition 4 holds for arbitrary choice functions, our proof technique

is flexible enough to (potentially) provide stronger results when tailored to a particular choice

29 For any algorithm with an optimality criteria (such as AC and OPT), in the presence of multiple optimal solutions, we
follow the convention of choosing the optimal solution that presents the ranked subset of the smallest size, breaking
ties in favor of the solution that lexicographically minimizes the indices of the ranked subset.
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function. For example, consider a special case of the cascade (or sequential search) model for

volunteer choice, which has been used to model search on online platforms (see, e.g., Aggarwal

et al. 2008 and Kempe and Mahdian 2008).

Definition 5 (Opportunity-Agnostic Cascade Model) The opportunity-agnostic cascade

model is parameterized by a volunteer-specific view probability νt > 0 and a volunteer-specific exit

probability qt ≥ 0. Given a ranked subset of opportunities (of length at most K), the volunteer

sequentially “examines” the opportunities starting from the top (i.e., position 1). The volunteer

views the top-ranked opportunity independently with probability νt. Conditional on not viewing the

opportunity, the volunteer exits the platform independently with probability qt. If the volunteer

does not exit, they repeat the same process for the second-ranked opportunity, and so on. If the

volunteer reaches the end of the ranked list without viewing an opportunity, they exit the platform.

The opportunity-agnostic cascade model is a special case of the cascade model in which the

view probabilities depend only on the ranked position of an opportunity, and are “agnostic” to

the identity of the opportunity itself. This property leads to the following observation: under the

opportunity-agnostic cascade model, ranking opportunities in descending order of µi,t ·ψ(FRi,t−1)

satisfies AC-R’s optimality condition (as given in (12)). Using this critical observation (formalized

in Claim 8 of Appendix B.2), we are able to strengthen Proposition 4 under this choice model.

Proposition 5 (AC-R Under the Opportunity-Agnostic Cascade Model) Let the smallest

capacity be given by c, let the maximum conversion probability ratio (given by Definition 4) be at

most σ, and suppose each volunteer choice follows the opportunity-agnostic cascade model (specified

in Definition 5). Then, for any effective fraction of external traffic β, the competitive ratio of the

AC-R algorithm is at least f(β, c,σ), as defined in the statement of Theorem 2.

The proof of Proposition 5 (deferred to Appendix B.2) crucially relies on the fact that the

probability of viewing an opportunity depends only on its position in the ranking. Therefore,

different rankings can only have different “relative values” if either (a) there are differences in

conversion probabilities conditional on a view, or (b) the rankings are of different length. The

former influences our bound via the MCPR σ, while we account for the latter by leveraging the

observation that the AC-R algorithm ranks opportunities in descending order of µi,t ·ψ(FRi,t−1).

6. Evaluating Algorithm Performance on VM Data

In this section, we use data from VM to numerically evaluate the performance of the AC algorithm in

instances closer to practice. Section 6.1 provides useful background on the VM platform. Section 6.2

explains how we use VM data to construct instances of our model. Finally, Section 6.3 compares

the performance of AC to various benchmarks and demonstrate the effectiveness of our algorithm.
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6.1. VolunteerMatch Background

As mentioned in Section 1, VM is the U.S.’s largest online platform for connecting volunteers and

opportunities. To carry out our case study, we draw upon VM’s database – which provides us with

information on opportunities’ and volunteers’ activities, such as sign-ups– as well as VM’s Google

Analytics (GA) dataset, which consists of a subset of session-level website traffic activity.

Organizations looking for volunteers post an opportunity, and each opportunity has a location

(in-person or virtual), timing (specific dates/times or a flexible schedule), number of volunteers

needed, and up to three associated “causes,” out of a list of thirty (e.g., LGBTQ, seniors, hunger,

etc.). In Figure 3, we display the percentage of opportunities that are associated with each cause.

For the purpose of this section, we will only consider the 10,737 virtual opportunities appearing

in our GA data between August 2020 and March 2021 for which we have precise data on capacity.

(We provide more details about this subset of opportunities in Appendix C.1.)

Volunteers also select a subset of the different causes when creating an account on VM, and

Figure 3 displays the percentage of volunteers interested in each cause. When internal traffic visits

the VM website, they are presented with a ranked list of opportunities, which can be filtered

to include only opportunities associated with the causes they are interested in. Volunteers then

can view an opportunity, i.e, they can click on an opportunity and learn more about the job

description, requirements, etc. Nearly half (45%) of internal traffic leaves the site without viewing

any opportunity. By contrast, all external traffic volunteers go directly to view their targeted

opportunity. Conditional on viewing an opportunity, a volunteer may choose to sign up for it.

As discussed in Section 1, opportunities differ greatly in the amount of sign-ups from both inter-

nal and external traffic that they currently receive, which results in some opportunities receiving

excessive sign-ups. Our numerical study aims to understand whether using the AC algorithm on the

VM platform would reuslt in a better utilization of traffic. To that end, in the following section, we

construct an instance based on VM data, and we test AC on this instance against various bench-

marks, including a proxy for current practice on the site. We then investigate how the performance

of AC changes as a function of the EFET by considering a family of similar instances (which loosely

represent settings where VM has some control over the destination of external traffic).

6.2. Instance Construction

We now briefly describe how we use the available data to construct an instance that is as close to

practice as possible. More details on each component of the instance can be found in Appendix C.3.

Set of Opportunities. Because we wish to compare the performance of AC against that of an

offline benchmark (which is a computationally-intensive task, as described below and in Appendix

C.4), we focus our numerical study on a random sample of 100 opportunities from the set of 10,737
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opportunities described in Section 6.1 and include relevant robustness checks in Appendix C.2. We

have precise data on the number of volunteers needed for each of these opportunities, which we

use as the opportunities’ capacities.

Source and Arrival Order. Based on volunteer activity, we estimate that there are T = 11,345

website visitors for our subset of 100 opportunities,30 83% of whom are internal traffic (recall that

45% of these volunteers leave the site without viewing anything). To generate the arrival sequence,

we preserve the traffic pattern observed in the session-level data (after appropriate scaling, as we

only observe session-level data for approximately 20% of website traffic). For example, if volunteer

1 is external traffic and volunteer 2 is internal traffic in the dataset, then in our simulation, the

first five volunteers will all be external traffic, and the next five will be internal traffic.

Volunteer Conversion Probabilities. External traffic volunteers are straightforward: each

such volunteer goes directly to view their targeted opportunity and may choose to sign-up for

this opportunity; we directly observe these sign-up realizations in the data and preserve these

realizations in our simulation (after appropriate scaling as described above).

By contrast, internal traffic volunteers could view any one of a ranked list of opportunities. We

assume that internal traffic volunteers only have non-zero pair-specific conversion probabilities for

opportunities for which they are compatible; however, we do not directly observe this compatibility

from the data. To estimate this compatibility structure, we use data on volunteer and opportunity

causes.31 As shown in Figure 3, there is significant variation in volunteers’ interest across causes

as well as variation in the number of opportunities associated with each cause. To construct the

compatibility for each internal traffic volunteer, we randomly generate causes for these volunteers

proportional to the empirical distribution we observe, independently across causes and volunteers.

In addition, we preserve the causes associated with each opportunity in our sample. A volunteer

is compatible with an opportunity if and only if they share at least one cause in common.

To estimate the vector of conversion probabilities for internal traffic volunteers conditional on

viewing a compatible opportunity, we run a logistic regression on the observed view conversion

probabilities using opportunity-level characteristics (e.g., causes). For all incompatible volunteer

and opportunity pairs, we set the conversion probability to zero. Below we discuss how internal

traffic volunteers make viewing decisions among compatible opportunities.

30 There are significantly more visitors to the VM site over the 8-month period that we study; this represents the
number of visitors proportional to this subset of 100 random opportunities. See Appendix C.3 for more details.

31 For in-person opportunities, compatibility also depends on location, hence our focus on virtual opportunities.
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Figure 3 Percentage of volunteers and opportunities associated with each cause. These percentages need not

sum to 100%, as opportunities and volunteers can be associated with multiple causes.

Volunteer Choices. Internal traffic volunteers arriving to VM are presented with a ranked

list of opportunities. They can choose to view an opportunity on the list and, after viewing, they

may choose to sign up for it. While our dataset is rich enough to allow us to construct all of the

aforementioned dimensions of our instance, it does not contain precise information on the ranking

presented to each internal traffic volunteer. Consequently, we cannot infer the choice behavior of

these volunteers through the available VM data. Thus, in this simulation study, we assume internal

traffic behaves according to the opportunity-agnostic cascade model introduced in Definition 5.

Specifically, we assume volunteers only consider the top three options presented (i.e., K = 3).

Before exhausting those three options, we assume the view and exit probabilities are homogeneous

and equal to ν = 0.3 and q= 0.24, respectively. These parameters are chosen to match our empirical

observation that only 55% of internal traffic views an opportunity. Upon viewing an opportunity,

the volunteer will sign up according to their conversion probability, and will otherwise depart.

Benchmarks. To gain a better understanding of the performance of AC, we compare it with the

following alternatives:

Current Practice (CP): Under our first benchmark – which serves as a stylized proxy for

VM’s current practice – the platform ranks compatible opportunities based on the “recency”

of an opportunities’s actions.32 Thus, it does not account for (i) opportunities’ current fill

rates and (ii) the traffic source (i.e., internal or external).

Smart Current Practice (SCP): Our second benchmark is a slightly more sophisticated

version of CP that only ranks opportunities that are not yet full. That is, this algorithm ranks

compatible opportunities with remaining capacity sorted by recency.

32 Once an organization posts an opportunity on VM’s platform, it can take various actions to modify the opportunity,
affecting its recency. We preserve each opportunity’s actions from VM’s internal dataset, and we then recreate the
ranking that internal traffic would see under this algorithm, which we remind is a proxy for current practice.



30 Manshadi et al.: Algorithms for Multi-Channel Traffic

Algorithm 1 (MSVV): As a third benchmark, we use the MSVV algorithm introduced in Mehta

et al. (2007). As discussed before, this algorithm makes ranking decisions based on conversion

probabilities and the current fill rates.

Upper bound on OPT (OPT): Our benchmark OPT (see Definition 1) is a dynamic program of

exponential size and is therefore challenging to compute. As is standard in the literature (see,

e.g., Alaei et al. 2013), we upper-bound OPT with the solution to a deterministic fractional

matching, denoted OPT, formally defined in Appendix C.4. We use OPT in lieu of OPT as a

normalization factor to evaluate the performance of AC and the other benchmarks.

6.3. Results

We now aim to understand how well AC performs on the data-driven instances constructed as

described in Section 6.2. Specifically, we first examine the performance of AC against the aforemen-

tioned benchmarks. Then, we investigate how the performance of AC changes under different levels

of the EFET, which a platform may be able to achieve if it has some control over external traffic.

Performance of AC: In Figure 4a, we present the value of AC and the three benchmarks intro-

duced above (CP, SCP, and MSVV), averaged over 50 simulations33 and normalized by OPT. Figure

4a shows that AC dramatically outperforms CP and achieves 85% of OPT. Given that OPT itself is an

upper-bound on OPT, this implies that the performance of AC is remarkably close to that of OPT.

Though AC also outperforms SCP, accounting for fill rates even in a binary way (i.e., by not show-

ing opportunities that have reached capacity) significantly narrows the gap.34 Finally, AC performs

similarly to MSVV. We highlight that only 19% of the capacity of these opportunities could be filled

by external traffic in this instance, i.e., EFET= 19%. Hence, this is consistent with our theoretical

results, as there is no gap between the competitive ratios of AC and MSVV when the EFET is low.35

AC’s strong performance is due to its effectiveness in re-distributing internal traffic. We illustrate

this in Figure 5, which shows the sign-up distributions resulting from a single simulated run of CP

and AC. We normalize each opportunity’s sign-ups by its capacity such that the black line represents

its sufficient number of sign-ups. CP results in a highly non-uniform sign-up distribution as it fails

to “de-prioritize” those that have already received a sufficient amount of sign-ups. Under CP, we

see that in hindsight 83% of the internal traffic can be re-distributed. In comparison, under AC the

sign-ups from internal traffic are distributed more evenly across opportunities. Consequently, the

amount of internal traffic that can be re-distributed in hindsight decreases from 83% to 18%.

33 In each simulation, whenever an internal traffic volunteer arrives, we draw random variables to determine which
opportunity a volunteer views and (conditional on viewing an opportunity) whether the volunteer signs up.

34 In Appendix C.2 we show how these performance gaps scale as a function of the instance size.

35 However, unlike in our theoretical results, the arrival pattern in this instance is not adversarially chosen.
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Figure 4 (a) Performance of AC and three benchmarks CP, SCP, and MSVV (b) performance of AC under different

levels of the EFET.
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Varying EFET: We conclude this case study with a thought experiment that can be useful

to inform the design of online platforms such as VM, and which allows us to investigate the

performance of AC as the EFET changes. As discussed in Section 1, external traffic can be the

result of targeted outreach activities by organizations, but it can also be driven by the platform.

For example, VM sends out recurring emails to its subscribers to highlight a few opportunities.

As an illustration of the potential benefit if the platform had some control over the destination

of external traffic, consider the top panel of Figure 5. Even without internal traffic, 65% of the

sign-ups from external traffic are excessive. (We remind that this figure illustrates the output of a

single simulated run of CP and AC in the instance constructed in Section 6.2). With this in mind,

we consider the following family of perturbed instances. We define a parameter η ∈ (0,1); for each

opportunity that has excess external traffic in hindsight (i.e., more sign-ups from external traffic

than its total capacity), we take an η fraction of that excess external traffic and we re-assign it

to opportunities selected uniformly at random from among those that do not have excess external
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traffic in hindsight and that have at least one cause in common with that opportunity. For example,

suppose opportunity a received 10 external sign-ups, but has capacity 5. This opportunity has 5

excess external sign-ups. If η= 0.2, we would take one of those sign-ups and allocate it to a different

opportunity. As we vary η from 0 to 1, the EFET increases from its original value of 19% to 41%.

Figure 4b shows the expected value of AC (in blue) and its expected value normalized by OPT (in

red) as a function of the EFET. As η (or equivalently, the EFET) increases, the amount of filled

capacity under AC substantially increases. However, OPT also increases, such that their ratio remains

almost unchanged. The fact that the normalized performance of AC is largely unchanged for an

EFET between 19% and 41% is consistent with our theoretical results, as the competitive ratio

only improves when the EFET exceeds 1/e (see Theorem 2 and Figure 2a). In practice, of course,

re-directing external traffic is more nuanced than simply re-allocating an external sign-up uniformly

at random, as we do in this simulation. We use this approach as a crude way to simultaneously

investigate the performance of AC as the EFET changes and to illustrate the potential benefit

of designing off-platform outreach (such as targeted emails). Studying how to optimally design

external traffic in a well-motivated setting is an interesting potential direction for future research.

7. Conclusion

In this paper, we introduce a framework for making online recommendations to maximize matches

in the presence of external traffic, motivated by platforms such as VolunteerMatch (the largest

online volunteer engagement network in the US, and our industry partner). Our recommendation

algorithm, Adaptive Capacity (AC), does not know the amount of external traffic a priori, yet it

nevertheless provides strong parameterized guarantees (relative to both the commonly-used MSVV

algorithm and the upper bound we establish on any online algorithm). Our flexible analysis allows

us to generalize our results to settings where the platform provides a ranked set of recommendations.

Beyond theoretical guarantees, we demonstrate AC’s practical effectiveness in simulations based on

VM data. We are currently collaborating with VM to implement a version of our algorithm.

More generally, our work shows the importance of accounting for the source of traffic in decision-

making on platforms with multi-channel traffic, which opens up opportunities for further research.

For instance, while we have focused on settings where the platform cannot influence external traffic,

some platforms may have some degree of control over the timing or the destination of this traffic

(e.g., via marketing campaigns or curated email recommendations). Also, platforms with external

traffic may have objectives beyond maximizing the number of matches (e.g., platforms such as

DonorsChoose may aim to maximize the number of donation campaigns that reach a certain

threshold). Studying the platform design in such settings is an interesting direction for future work.
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Appendix A: Omitted Proofs of Section 4

A.1. Proof of Proposition 1 (Section 4.1)

The proof of Proposition 1 follows from the more general hardness result of Theorem 1, which establishes

an upper bound of 1− 1/e on the competitive ratio of any online algorithm in the special case where there

is no external traffic(i.e., when β = 0).

We start from the instance that establishes this result (I2(0), described in Appendix A.4), which consists

of a total capacity of NC and an equal number of internal traffic volunteers. Fixing a particular β ∈ [0,1),36

we add one opportunity to that instance with capacity β

1−βNC. To exactly fill this opportunity, we append

β

1−βNC external traffic volunteers to the start of the arrival sequence, where each of these arriving volunteers

has a conversion probability of 1 for the newly-added opportunity.

By design, (i) all external traffic arrives first, (ii) the EFET is exactly equal to β, (iii) the new opportunity

will be entirely filled with external traffic under any algorithm, as this traffic directly views the opportunity,

but (iv) by Theorem 1, no online algorithm can achieve a competitive ratio better than 1 − 1/e on the

remaining opportunities (none of the added volunteers are compatible with the remaining opportunities).

Putting these four observations together, we have established an upper bound of β+ (1−β)(1− 1/e) on the

competitive ratio of any online algorithm when the external traffic arrives first.37

A.2. Proof of Proposition 2 (Section 4.1)

Consider a family of instances I1(β) parameterized by the EFET β. In each instance, there are a large number

of opportunities N , each with identical large capacity C. The arrival sequence consists of NC volunteers,

and for a given effective fraction of external traffic β, the first βNC of these volunteers are external traffic.38

All volunteers have conversion probabilities of 1 or 0, and if µi,t = 1 (resp. 0), we will refer to opportunity i

and volunteer t as compatible (resp. incompatible).

To help describe the compatibility structure of the arriving volunteers, we first define constants α̂1 and

α̂2, where the former is the unique solution in [0,1]39 to

β = α̂1 + (1− α̂1)
(

exp
(
− α̂1/(1− α̂1)

)
− 1
)
,

and the latter is defined as

α̂2 = 1− 1− α̂1

exp (exp(−α̂1/(1− α̂1)))
.

We illustrate the arrival sequence (and its associated compatibility structure) for this family of instances

in Figure 6. To be precise, the βNC external traffic volunteers arrive first, and for each opportunity i ∈

36 For β = 1, we have the trivial result that the upper bound on the competitive ratio is 1.

37 To show that this upper bound holds for any minimum capacity c, it suffices to add an additional opportunity
with capacity c for which volunteers have conversion probability of 0. The value of OPT and the upper bound on the
performance of any algorithm do not change, and the EFET also remains the same in the limit as N approaches
infinity.

38 We assume that (1− β)NC is an integer. This assumption does not impact the upper bound in the statement of
Proposition 2, as the expression comes from taking the limit as N approaches ∞.

39 We note that for any β ∈ [0,1], it is easy to verify algebraically that there is a unique solution in the interval [0,1]
for α̂1.
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I1
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. . .
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t = 1 t = c+ 1 t = (1− β)nc+ 1 t = nc
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. . . . . .

i = 1 i = α̂1n i = α̂1n+ 1 i = n

. . . . . . . . .

Figure 1: Black circles represent targeted traffic and blue circles represent or-
ganic traffic. c is the capacity, which is equal for all opportunities in this
example. µi,t = 1 for all edges shown on the graph, and µi,t = 0 for all other
(i, t) pairs. Top: Visualization of instance I1, a hard instance for AC. Bottom:
Visualization of instance I2, a hard instance for MSVV when all targeted traffic
arrives first.

1

Figure 6 The family of instances generating the upper bound on MSVV when all external traffic arrives first.

{1, . . . , α̂1N}, there are C

(
1−

(
(1−α̂1)N

(1−α̂1)N+1

)i)
compatible external traffic arrivals for that opportunity. After

the arrival of the last external traffic, the internal traffic arrives, according to the following compatibility

structure: for each opportunity i∈ [N ], there is a batch of ∆i sequentially-arriving homogeneous volunteers.

For each i∈ {1, . . . , α̂1N}, there are ∆i =C
(

(1−α̂1)N

(1−α̂1)N+1

)i
volunteers who are compatible with all opportuni-

ties j ≥ i. In addition, for each i∈ {α̂1N + 1, . . . ,N}, there are ∆i =C volunteers who are again compatible

with all opportunities j ≥ i.
First, we verify that the EFET is equal to β in the limit as N gets large.

1

NC

α̂1N∑
i=1

C

(
1−

(
(1− α̂1)N

(1− α̂1)N + 1

)i)
=

1

NC

α̂1N∑
i=1

[
C

(
1−

(
1− 1

(1− α̂1)N + 1

)i)]
N→∞−−−−→

∫ α̂1

0

[
1− exp

( −x
1− α̂1

)
∂x

]
(13)

=

(
α̂1 + (1− α̂1)

(
exp

( −α̂1

1− α̂1

)
− 1

))
= β (14)

In (13), we use the fact that (1−1/n)nx approaches exp−x as n approaches infinity. Furthermore, (14) follows

by applying the definition of α̂1. Next, we analyze the value of MSVV and OPT on the above family of instances

via the following two claims.

Claim 1 For any EFET β, the fraction of total capacity filled under MSVV on I1(β) is at most α̂2.

Proof of Claim 1 To prove this claim, we will bound the amount of filled capacity for each opportunity

under MSVV. First, we will show that the α̂1N opportunities that receive external traffic do not receive any

matches from internal traffic; i.e., for each i ∈ [α̂1N ], we will show that MSVVi,T = C

(
1−

(
(1−α̂1)N

(1−α̂1)N+1

)i)
.

Suppose towards a contradiction that there exists some opportunity j ∈ [α̂1N ] which receives a match from

internal traffic under MSVV. Due to restrictions on compatibility, this match must have come from one of the

first j batches of internal traffic, which in total represents

j∑
i=1

∆i =

j∑
i=1

C

(
(1− α̂1)N

(1− α̂1)N + 1

)i
=C ((1− α̂1)N)

(
1−

(
(1− α̂1)N

(1− α̂1)N + 1

)j)
(15)

internal traffic volunteers. We are supposing that one of these volunteers was allocated to opportunity j.

In that case, due to the pigeonhole principle, there must be at least one opportunity j′ – from among
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the (1− α̂1)N opportunities that did not receive external traffic – with a filled capacity strictly less than

C

(
1−

(
(1−α̂1)N

(1−α̂1)N+1

)j)
upon the arrival of the last volunteer in batch j. By definition, MSVV should never

have recommended j ahead of j′, giving us a contradiction.

Next, we show that each opportunity i∈ {α̂1N + 1, . . . ,N} has a filled capacity of

MSVVi,T = min

{
C,C

(
1−

(
(1− α̂1)N

(1− α̂1)N + 1

)α̂1N

+

i∑
j=α̂1N+1

1

N − j+ 1

)}
.

Note that in this matching setting, MSVV recommends opportunities to equalize their fill rate. Thus, after

the arrival of the α̂1N
th batch of volunteers, all opportunities j ∈ {α̂1N + 1, . . . ,N} have an equal amount

of filled capacity of C

(
1−

(
(1−α̂1)N

(1−α̂1)N+1

)α̂1N
)

, based on the analysis in the above paragraph (i.e., Equation

(15)).40 For the subsequent batches of volunteers, i.e., for j ∈ {α̂1N + 1, . . . , α̂2N}, MSVV will maintain an

equal fill rate among all compatible opportunities by evenly distributing the ∆j = C arriving volunteers in

batch j among the N − j+ 1 compatible opportunities. Thus, after the final arrival in batch j (which is the

last volunteer compatible with opportunity j), opportunity j will either have reached capacity or will have

a filled capacity of

C

(
1−

(
(1− α̂1)N

(1− α̂1)N + 1

)α̂1N
)

+

i∑
j=α̂1N+1

C

N − j+ 1
.

To compute the fraction of total capacity filled under MSVV on I1(β), we then take an average over the fill

rate of all opportunities. To that end, we first compute the fill rate for each opportunity in the limit as the

number of opportunities approaches infinity.

For i∈ [α̂1N ],

FRi,T = 1−
(

(1− α̂1)N

(1− α̂1)N + 1

)i
Each opportunity i∈ {α̂1N + 1, . . . , α̂2N} will not reach capacity, and thus its fill rate approaches:

FRi,T = 1−
(

(1− α̂1)N

(1− α̂1)N + 1

)α̂1N

+

i∑
j=α̂1N+1

1

N − j+ 1

= 1−
(

(1− α̂1)N

(1− α̂1)N + 1

)α̂1N

+

(1−α̂1)N∑
k=N−i+1

1

k

It is easy to verify algebraically that for i = α̂2N , the fill rate of opportunity i, FRi,T , asymptotically

approaches 1. The remaining opportunities reach capacity.

With this in mind, the fraction of filled capacity under MSVV can be computed as follows:

1

N

∑
i∈[N]

FRi,T =
1

N

(
α̂1N∑
i=1

(
1−

(
(1− α̂1)N

(1− α̂1)N + 1

)i)

+

α̂2N∑
i=α̂1N+1

(
1−

(
(1− α̂1)N

(1− α̂1)N + 1

)α̂1N

+

(1−α̂1)N∑
k=N−i+1

1

k

)
+

N∑
i=α̂2N+1

1

)
N→∞−−−−→

∫ α̂1

0

1− exp

( −x
1− α̂1

)
∂x+

∫ α̂2

α̂1

1− exp

( −α̂1

1− α̂1

)
+ log

(
1− α̂1

1−x

)
∂x+ (1− α̂2) (16)

40 We allow C to be sufficiently large such that there is vanishing integrality gap.
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=α̂1− (1− α̂1)

(
1− exp

( −α̂1

1− α̂1

))
+ (α̂2− α̂1)

[
1− exp

( −α̂1

1− α̂1

)]
+

∫ α̂2

α̂1

log

(
1− α̂1

1−x

)
∂x+ (1− α̂2)

=(1− α̂2)
(

exp
(
− α̂1/(1− α̂1)

)
+ log

(
(1− α̂2)/(1− α̂1)

))
+ α̂2

=α̂2

In (16), we again use the fact that (1−1/n)nx approaches e−x as n approaches infinity. Furthermore, we use

the fact that
∑xn

k=yn 1/k approaches log(x/y) as n approaches infinity. The last equality comes from applying

the definition of α̂2 to see that log
(
(1− α̂2)/(1− α̂1)

)
=−exp

(
− α̂1/(1− α̂1)

)
. This completes the proof of

Claim 1. �

Claim 2 For any EFET β, OPT fills all capacity on I1(β).

Proof of Claim 2 Consider a solution which matches all external traffic and then matches each of the ∆i

internal traffic volunteers in batch i to opportunity i. To see why such a solution gives a perfect matching,

note that each opportunity i∈ {1, . . . , α̂1N} will receive C

(
1−

(
(1−α̂1)N

(1−α̂1)N+1

)i)
matches from external traffic

and ∆i = C
(

(1−α̂1)N

(1−α̂1)N+1

)i
matches from internal traffic, leading to a total of C matches. Each opportunity

i∈ {α̂1N + 1, . . . ,N} will receive ∆i =C matches (all from internal traffic). Thus, each opportunity is filled

to capacity under this solution, which implies that the optimal solution must also fill all capacity. �

Combining Claims 1 and 2, we see that MSVV only fills a fraction α̂2 of the capacity filled by OPT on this

family of instances, which provides a parameterized upper bound on the competitive ratio of MSVV in this

setting.41

A.3. Proof of Proposition 3 (Section 4.1)

We prove Proposition 3 in two steps. In Step (a), fixing an instance I ∈ Iβ, we show that the expected

fraction of capacity filled by external traffic is β under both AC and OPT. Then, in Step (b) we establish a

lower bound on the amount of capacity filled by internal traffic under AC, which depends on the amount of

capacity filled by internal traffic under OPT. Together, these steps enable us to place a lower bound on the

competitive ratio of AC, where the bound is parameterized by the EFET β.

Step (a): Both OPT and AC always recommend the targeted opportunity i∗t to external traffic. Since

external traffic is assumed to arrive before all internal traffic, this external traffic will fill a fraction of capacity

given by

β(I) =

∑
i∈[n] E

[
min{ci,

∑
t∈Vext 1[ξt(S

i∗t
t ) = i]}

]
∑

i∈[n] ci
.

We note that this fraction of capacity is exactly equivalent to the definition of the EFET (see Definition 2),

which is equal to β for any instance I ∈ Iβ.

41 To show that this upper bound holds for any minimum capacity c, it suffices to add an additional opportunity
with capacity c for which volunteers have conversion probability of 0. The performance of both OPT and MSVV are
unchanged, and the EFET remains the same in the limit as N approaches infinity.
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Step (b): Fixing an instance I, we now turn our attention to lower-bounding the expected amount

of capacity filled by internal traffic under the AC algorithm, where the expectation is taken over sample

paths ω = {ω1, . . . ,ωT}, i.e., realizations of random variables that govern volunteer choices in this instance.

Formally, we interpret ωt as a vector of length n+ 1, where the ith component of ωt (denoted ωi,t) indicates

volunteer t’s sign-up decision if the platform were to recommend opportunity i. For a fixed instance I and

a fixed sample path ω, we use ÂC to denote the amount of capacity filled by internal traffic under the AC

algorithm.42

Our lower bound on Eω

[
ÂC
]

will depend on the expected amount of capacity filled by internal traffic under

OPT, which we likewise denote with Eω

[
ÔPT
]
. Note that in this step of the proof, we are concerned only

with the remaining capacities for each opportunity i after the arrival of external traffic (denoted ĉi), which

depends on the realizations of sign-ups made by external traffic. As such, ĉi depends not only on the instance

I, but also on the sample path ω.

To provide such a lower bound, we leverage the LP-free approach developed in Goyal and Udwani (2019)

and Goyal et al. (2020), which involves the creation of path-based pseudo-rewards. (For a more complete

discussion of the intuition behind this approach, we kindly refer to the proof sketch of Theorem 2 in Section

4.4.) For a fixed instance I and a fixed sample path ω, we define the pseudo-rewards L̂t for all t∈ V int and

K̂i for all i∈ [n] according to the following:

L̂t =
∑
i∈[n]

ψ(FRi,t−1)1[ξt(S
OPT
t ) = i] (17)

K̂i =
∑
t∈V int

(1−ψ(FRi,t−1))1[ξt(S
AC
t ) = i], (18)

where we remind that under the AC algorithm, FRi,t−1 = ACinti,t /(ci− ACexti,t ). This is equivalent to ACinti,t /ĉi in

our warm-up setting where external traffic arrives first and the remaining capacity for opportunity i is given

by ĉi. We now prove that the expected sum of these pseudo-rewards serves as a lower bound on the expected

value of ÂC.

Lemma 7 For any instance I,

Eω

[
ÂC
]
≥ Eω

 ∑
t∈V int

L̂t +
∑
i∈[n]

K̂i

 , (19)

where L̂t and K̂i are defined in (17) and (18), respectively.

Proof of Lemma 7: The proof follows from the definition of L̂t and K̂i as well as the design of the AC

algorithm:

Eω

[
ÂC
]

=Eω

 ∑
t∈V int

∑
i∈[n]

1[ξt(S
AC
t ) = i]

 (20)

42 Even though ÂC depends on the instance and the sample path, we hereafter suppress this dependence to ease
exposition (for ÂC as well as for all other quantities that depend on the instance and the sample path).
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=Eω

 ∑
t∈V int

∑
i∈[n]

ψ(FRi,t−1)1[ξt(S
AC
t ) = i] +

∑
t∈V int

∑
i∈[n]

(
1−ψ(FRi,t−1)

)
1[ξt(S

AC
t ) = i]

 (21)

≥Eω

 ∑
t∈V int

∑
i∈[n]

ψ(FRi,t−1)1[ξt(S
OPT
t ) = i] +

∑
i∈[n]

K̂i

 (22)

=Eω

 ∑
t∈V int

L̂t +
∑
i∈[n]

K̂i

 (23)

Equality (20) holds because the AC algorithm will never recommend an opportunity that has already reached

capacity to internal traffic.43 Consequently, the amount of capacity filled by internal traffic under the AC

algorithm is exactly equal to the numbers of sign-ups from internal traffic.

Inequality (22) follows from the AC algorithm’s optimality condition (see Algorithm 2), which ensures that

it recommends the opportunity that maximizes the weighted probability of generating a sign-up (where the

weight for opportunity i at time t is given by ψ(FRi,t−1)). Since the recommendation provided by OPT to

any volunteer must be independent of their sign-up realization, the inequality holds. Applying the definition

of the pseudo-rewards L̂t for t∈ V int \ V0 completes the proof of Lemma 7. �

Next, we place a lower bound on the expected sum of the pseudo-rewards, which depends on the amount

of capacity of each opportunity i filled by internal traffic under OPT along a fixed sample path, which we

denote by ÔPTi.

Lemma 8 For any instance I,

Eω

 ∑
t∈V int

L̂t +
∑
i∈[n]

K̂i

 ≥ (1− 1/e)Eω

[
ÔPT
]
−
∑
i∈[n]

Eω

[
1
[
ÔPTi = ĉi

]]
(24)

Proof of Lemma 8: We will prove this claim along each sample path ω by separately placing lower bounds

on the L̂t pseudo-rewards and the K̂i pseudo-rewards. For the former,∑
t∈V int

L̂t =
∑
t∈V int

∑
i∈[n]

ψ(FRi,t−1)1[ξt(S
OPT
t ) = i] (25)

≥
∑
t∈V int

∑
i∈[n]

ψ(FRi,T )1[ξt(S
OPT
t ) = i] (26)

=
∑
i∈[n]

ÔPTiψ (FRi,T ) (27)

Equality in (25) follows from the definition of L̂t. Inequality in (26) holds because ψ is a decreasing function

in its argument, and FRi,T ≥FRi,t−1 for all t∈ [T ]. All other steps are algebraic.

We now turn our attention to the K̂i pseudo-rewards:

K̂i =
∑
t∈V int

(1−ψ(FRi,t−1))1[ξt(S
AC
t ) = i] (28)

43 To see this, note that if opportunity i has reached capacity before time t, then µi,t · ψ(FRi,t−1) = 0. Based on
its convention for breaking ties in favor of the opportunity with the lowest index, the AC algorithm would always
recommend opportunity 0 instead of an at-capacity opportunity i.
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=
∑
t∈V int

(
1−ψ

(
ACinti,t−1

ĉi

))
1[ξt(S

AC
t ) = i] (29)

=
∑

k∈[ACint
i,T

]

(
1−ψ

(
k− 1

ĉi

))
(30)

= e
−1
ĉi

∑
k∈[ACint

i,T
]

(
1−ψ

(
k

ĉi

))
(31)

≥ e
−1
ĉi

∫ ACinti,T

0

1−ψ(x/ĉi) ∂x (32)

= e
−1
ĉi ĉi (1−ψ (FRi,T )− 1/e) (33)

≥ (ĉi− 1) (1−ψ (FRi,T )− 1/e) (34)

Equality in (30) holds because the counter ACinti,t will increase by 1 for any t ∈ V int where ξt(S
AC
t ) = i. The

summation in (30) represents a left Reimann sum of an increasing function. In (31), we utilize the fact that

for any k, 1−ψ((k− 1)/ĉi) = e−1/ĉi(1−ψ(k/ĉi)). As the summation in (31) is now a right Reimann sum of

an increasing function, we bound the sum with an appropriate integral in (32). Finally, (34) holds because

e−x ≥ 1−x for any x.

Combining (27) and (34), we see that for each sample path ω,∑
t∈V int

L̂t +
∑
i∈[n]

K̂i ≥
∑
i∈[n]

ÔPTiψ (FRi,T ) + (ĉi− 1) (1−ψ (FRi,T )− 1/e) (35)

≥
∑
i∈[n]

(
ÔPTi−1[ÔPTi = ĉi]

)
ψ (FRi,T ) +

(
ÔPTi−1[ÔPTi = ĉi]

)
(1−ψ (FRi,T )− 1/e) (36)

= (1− 1/e)
∑
i∈[n]

(
ÔPTi−1

[
ÔPTi = ĉi

])
(37)

≥ (1− 1/e) · ÔPT−
∑
i∈[n]

1
[
ÔPTi = ĉi

]
(38)

Inequality in (36) comes from noting that
(
ÔPTi−1

[
ÔPTi = ĉi

])
cannot exceed either ÔPTi or ĉi−1. (We note

that the binary indicator 1
[
ÔPTi = ĉi

]
is equal to 1 if and only if opportunity i reaches capacity under OPT

along the fixed sample path ω.) Taking expectation across all sample paths completes the proof of Lemma

8. �

Combining Lemmas 7 and 8, we see that we can bound the expected amount of capacity filled by internal

traffic under AC via the following inequality:

Eω

[
ÂC
]
≥ (1− 1/e)Eω

[
ÔPT
]
−
∑
i∈[n]

Eω

[
1
[
ÔPTi = ĉi

]]
(39)

Together with Step (a), we have shown that for any instance I ∈ Iβ,

Eω [AC]

Eω [OPT]
=

β ·∑
i∈[n] ci +Eω

[
ÂC
]

β ·∑
i∈[n] ci +Eω

[
ÔPT
] (40)

≥
β ·∑

i∈[n] ci + (1− 1/e)Eω

[
ÔPT
]
−∑

i∈[n]Eω

[
1
[
ÔPTi = ĉi

]]
β ·∑

i∈[n] ci +Eω

[
ÔPT
] (41)
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=
β ·∑

i∈[n] ci + (1− 1/e)Eω

[
ÔPT
]

β ·∑
i∈[n] ci +Eω

[
ÔPT
] −

∑
i∈[n]Eω

[
1
[
ÔPTi = ĉi

]]
Eω [OPT]

(42)

≥
β ·∑

i∈[n] ci + (1− 1/e)Eω

[
ÔPT
]

β ·∑
i∈[n] ci +Eω

[
ÔPT
] − c−1 (43)

≥ β+ (1−β)(1− 1/e)− c−1 (44)

Equality in (40) comes from applying the result of Step (a), while inequality in (41) comes from applying the

result of Step (b). Equality in (41) follows from the definition of OPT. To see that (43) holds, we first fix a

sample path. Along that sample path, if ÔPTi = ĉi, then opportunity i must have reached capacity under OPT.

The capacity of opportunity i is at least c. Thus, along every sample path, OPT≥ c∑
i∈[n]Eω

[
1
[
ÔPTi = ĉi

]]
.

This is a sufficient condition to establish (43).

Finally, (44) comes from noting that the expression in (43) is decreasing in Eω

[
ÔPT
]
, which can be at

most Eω

[∑
i∈[n] ĉi

]
. Furthermore, Eω

[∑
i∈[n] ĉi

]
= (1− β)

∑
i∈[n] ci. We then plug in this upper bound for

Eω

[
ÔPT
]
. This final inequality establishes a lower bound for any instance I ∈ Iβ. Thus, it represents a

lower bound on the competitive ratio parameterized by the EFET β, as desired. This completes the proof

of Proposition 3. �

A.4. Proof of Theorem 1 (Section 4.2)

This proof is an adaptation of the proof of Theorem 7.1 in Mehta et al. (2007), which we have generalized

to apply in our setting. We aim to prove that no online algorithm (deterministic or randomized) can provide

a competitive ratio greater than max{1− 1/e,1 + β log(β)}. By Yao’s lemma (Yao 1977), it is sufficient to

show that there exists a distribution over a set of instances for which no deterministic algorithm can provide

an expected value greater than max{1− 1/e,1 +β log(β)}OPT.

We begin by fixing an EFET β and describing an instance I2(β). In this instance, the set of opportunities

is of size N , each with identical large capacity C. The arrival sequence consists of NC volunteers. The

first (1− β)NC of these volunteers are internal traffic, and the remaining βNC are external traffic.44 All

volunteers have conversion probabilities of 1 or 0, and if µi,t = 1 (resp. 0), we will refer to opportunity i and

volunteer t as compatible (resp. incompatible).

The arrival sequence of I2(β) can be broken down into N batches of C sequentially-arriving identical

volunteers. For each j ∈ {1, . . . , (1 − β)N}, the jth batch of volunteers consists of internal traffic that is

compatible with all opportunities i ≥ j. For each j ∈ {(1 − β)N + 1, . . . ,N}, the jth batch of volunteers

consists of external traffic which views (and is compatible with) opportunity i∗j = j. This external traffic can

fill the entire capacity of each of these βN opportunities, which implies that the EFET is equal to β in such

an instance.

We first establish the value of OPT on instance I2(β).

Claim 3 For any EFET β, OPT achieves a value of NC on I2(β).

44 We assume that βN is an integer. This assumption does not impact the upper bound in the statement of Theorem
1, as the expression comes from taking the limit as N and C approach ∞.
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Proof of Claim 3: Consider a solution which matches each of the C volunteers in the jth batch to oppor-

tunity j, for all j ∈ [N ]. These volunteer-opportunity pairs are all compatible based on the compatibility

structure previously described, and (since the conversion probabilities are exactly equal to 1) each oppor-

tunity will exactly reach its capacity of C. As this solution fills all capacity, OPT must also fill all capacity,

thereby achieving a total value of NC, regardless of the EFET β. �

We now consider the set of instances which can be obtained from I2(β) by permuting the indices of the

opportunities. Specifically, we apply a permutation P to the set of opportunities such that any algorithm sees

opportunities with indices {P(1), . . . ,P(N)}. We highlight that a priori the opportunities appear identical

to an online algorithm, aside from their indices. We augment our previous notation and describe such an

instance as I2(β,P).

Suppose that the permutation P is drawn uniformly at random from the set of all permutations of N

indices. For the set of instances generated by this distribution over permutations, in the following lemma,

we place an upper-bound on the expected value of any deterministic online algorithm.

Claim 4 Consider any deterministic online algorithm π. For any EFET β,

EP [π(I2(β,P))]≤
∑

i∈[(1−β)N]

min

{
C,

i∑
j=1

C

N − j+ 1

}
+

∑
i∈[N]\[(1−β)N]

C, (45)

where the expectation is taken with respect to the uniform distribution over permutations P.

Proof of Claim 4: To aid in this proof, let us define di,j as the amount of volunteers allocated to oppor-

tunity i from the jth batch of arriving volunteers. Recall that for j ∈ {1, . . . , (1−β)N}, volunteers in the jth

batch of arrivals are compatible with all opportunities i≥ j. Thus, we have:

EP [di,j ]≤


C

N − j+ 1
, if i≥ j

0 if i < j

To see why this must be the case, note that for each volunteer in the jth batch of volunteers, there

are a total of N − j + 1 compatible opportunities. The online algorithm cannot distinguish between these

compatible opportunities, as it only observes the indices {P(j), . . . ,P(N)}. Specifically, if i is one such

compatible opportunity, the online algorithm does not know which index in the set {P(j), . . . ,P(N)} is equal

to P(i). Hence, the expected amount of volunteers allocated to opportunity i cannot exceed C
N−j+1

, when

taking expectation with respect to the uniform distribution over permutations P.

More simply, for batches j ∈ {(1− β)N + 1,N}, the volunteers are only compatible with opportunity i if

i= j. Hence,

EP [di,j ]≤
{
C if i= j

0 if i 6= j

After the arrival of all volunteers, the expected fill of opportunity i is upper-bounded by
∑

j∈[N]EP [di,j ].

This quantity is either C (if i > (1 − β)N) or min{C,∑i

j=1
C

N−j+1
} (if i ≤ (1 − β)N). Summing over all

opportunities, we have the following upper bound on the value of any online algorithm:∑
i∈[(1−β)N]

min

{
C,

i∑
j=1

C

N − j+ 1

}
+

∑
i∈[N]\[(1−β)N]

C (46)

This completes the proof of Claim 4. �
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Together, and in combination with Yao’s lemma, these claims establish an upper-bound on the achievable

competitive ratio of any online algorithm of

1

NC

 ∑
i∈[(1−β)N]

min

{
C,

i∑
j=1

C

N − j+ 1

}
+

∑
i∈[N]\[(1−β)N]

C

 → max{1− 1/e,1 +β log(β)}, (47)

where the limit holds as C and N approach infinity.45 �

A.5. Upper Bound on MSVV in General Settings (Section 4.3)

In the following proposition, we provide an upper bound on the competitive ratio of MSVV as a function of

the EFET β.

Proposition 6 (Upper Bound on MSVV) For any effective fraction of external traffic β and any minimum

capacity, MSVV cannot achieve a competitive ratio better than{
1− 1/e, β ≤ 1/e

min{α2, α3} , β > 1/e

where, for β > 1/e, α2 is given by

α2 = 1− 1−α1

exp (exp(−α1/(1−α1)))

and α1 and is the unique solution in [0,1] to β = α1 +(1−α1)
(

exp
(
−α1/(1−α1)

)
−1
)

+ 1−α1

exp(exp(−α1/(1−α1)))
.

In addition,

α3 = min
α4∈[0,β]

1− 1−β
1−α4

(
α5 + (1−α6) log

(
1−α5

1−α6

))
,

where α5 = min{1−α4,
α4(β−α4)

1−β } and α6 = min{1−α4,1− (1−α5)/e}.

Proof of Proposition 6 The first part of Proposition 6 – which establishes an upper bound of 1−1/e when

β ≤ 1/e – follows immediately from Theorem 1, in which we prove such an upper bound on the competitive

ratio of any online algorithm.

We prove the remainder of this proposition in two claims by showing two different upper bounds (α2 and

α3) on the competitive ratio of MSVV parameterized by the effective fraction of external traffic β. Proposition

6 follows by taking the minimum of the two upper bounds for a given β.

To prove each claim, we construct a family of instances parameterized by β. We then evaluate the value of

MSVV on that family of instances relative to the value of OPT. Both of the instances that we design leverage

the fact that the notion of a fill rate under MSVV does not distinguish between internal and external traffic.

As a result, MSVV may mistakenly withhold internal traffic from opportunities that have previously received

external traffic. Furthermore, all instances leverage the triangular structure of our general hardness result

(see Appendix A.4).

45 To show that this upper bound holds for any minimum capacity c, it suffices to add an additional opportunity
with capacity c for which volunteers have conversion probability of 0. The value of OPT and the upper bound on the
performance of any algorithm do not change, and the EFET also remains the same in the limit as N approaches
infinity.
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Claim 5 For any effective fraction of external traffic β ∈ (1/e,1], the competitive ratio of MSVV is at most

1− 1−α1

exp (exp(−α1/(1−α1)))
(48)

where α1 is the unique solution in [0,1] to β = α1 + (1−α1)
(

exp
(
−α1/(1−α1)

)
− 1
)

+ 1−α1

exp(exp(−α1/(1−α1)))
.

Proof of Claim 5 To prove this claim, we construct a family of instances I3(β) parameterized by the

EFET β. (As we will highlight below, this family of instances will have a close relationship to the family

of instances I1(β), introduced in the proof of Proposition 2.) In each instance, there are a large number of

opportunities N , each with identical large capacity C. The arrival sequence consists of NC volunteers, and

for a given effective fraction of external traffic β, the first βNC of these volunteers are external traffic.46 All

volunteers have conversion probabilities of 1 or 0, and if µi,t = 1 (resp. 0), we will refer to opportunity i and

volunteer t as compatible (resp. incompatible).

To help describe the compatibility structure of the arriving volunteers, we first define constants α1 and

α2. For β ≤ 1/e, we define α1 = 0, while for β > 1/e, we define α1 as the unique solution in [0,1]47 to

β = α1 + (1−α1)
(

exp
(
−α1/(1−α1)

)
− 1
)

+
1−α1

exp (exp(−α1/(1−α1)))
,

and α2 is defined as

α2 = 1− 1−α1

exp (exp(−α1/(1−α1)))
.

The arrival sequence begins with external traffic volunteers for the first α1N opportunities. Specifically, for

each opportunity i ∈ {1, . . . , α1N}, there are C

(
1−

(
(1−α1)N

(1−α1)N+1

)i)
compatible external traffic arrivals for

that opportunity. After the arrival of these volunteers, the internal traffic arrives, according to the following

compatibility structure: for each opportunity i ∈ {1, . . . , α2N}, there is a batch of ∆i sequentially-arriving

homogeneous volunteers. The batches consist of ∆i = C
(

(1−α1)N

(1−α1)N+1

)i
volunteers for each i ∈ {1, . . . , α1N},

and they consist of ∆i =C volunteers for each i∈ {α1N + 1, . . . , α2N}. Opportunities in batch i are compat-

ible with all opportunities j ≥ i. Finally, the arrival sequence concludes with (1−α2)N batches of C external

traffic volunteers, where each batch views (and is compatible with) one opportunity i∈ {α2N + 1, . . . ,N}.
Before analyzing this family of instances, we make two observations. First, this arrival sequence is quite

similar to the arrival sequence in the family of instances I1(β), which are visualized in Figure 6 and which

provide our upper bound on MSVV in the setting where all external traffic arrives first (see Proposition 2). The

only difference comes from the last batches of arrivals, which are external traffic in this family of instances

(as opposed to internal traffic with broader compatibility, as in I1(β)). In both cases, these volunteers are

unable to be allocated under MSVV as their compatible opportunities have already reached capacity, whereas

these volunteers are allocated under OPT. Hence, the value of MSVV and the value of OPT are both unchanged.

Crucially, though, the EFET is different in these two instances, due to the change in source of the last-arriving

46 We assume that (1− β)NC is an integer. This assumption does not impact the upper bound in the statement of
Claim 5, as the expression comes from taking the limit as N approaches ∞.

47 We note that for any β ∈ (1/e,1], it is easy to verify numerically that there is a unique solution in the interval [0,1]
for α1.
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volunteers. As a result, for a fixed β, the instance I1(β) and I3(β) differ significantly. Instead, I1(β) and

I3(β+ α̂2) are nearly identical (where α̂2 is a function of β, as defined in the proof of Proposition 2). This

relationship means the upper bound provided by the family of instances I3(β) is a non-linear transformation

of the upper bound provided by the family of instances I1(β). Furthermore, we remark that in the limit as β

approaches 1/e, I3(β) approaches the instance I2(1/e), which provides our general hardness result presented

in Theorem 1.

We now verify that the EFET is equal to β in the limit as N gets large.

1

NC

(
α1N∑
i=1

C

(
1−

(
(1−α1)N

(1−α1)N + 1

)i)
+ (1−α2)NC

)
=

1

N

[
α1N∑
i=1

(
1−

(
1− 1

(1−α1)N + 1

)i)
+ (1−α2)N

]
N→∞−−−−→

∫ α1

0

[
1− exp

( −x
1−α1

)
∂x

]
+ (1−α2) (49)

=

(
α1 + (1−α1)

(
exp

( −α1

1−α1

)
− 1

))
+ (1−α2)

=β (50)

In (49), we use the fact that (1− 1/n)nx approaches e−x as n approaches infinity. Furthermore, (50) follows

by applying the definitions of α2 and α1. Next, we analyze the value of MSVV and OPT on the above family

of instances.

Value of MSVV on Instance I3(β): We will show that for any EFET β, the fraction of total capacity

filled under MSVV on I3(β) is at most α2. To that end, we will first bound the amount of filled capacity for

each opportunity under MSVV. First, we will show that the α1N opportunities that initially receive external

traffic do not receive any matches from internal traffic; i.e., for each i ∈ [α1N ], we will show that MSVVi,T =

C

(
1−

(
(1−α1)N

(1−α1)N+1

)i)
. Suppose towards a contradiction that there exists some opportunity j ∈ [α1N ] which

receives a match from internal traffic under MSVV. Due to restrictions on compatibility, this match must have

come from one of the first j batches of internal traffic, which in total represents

j∑
i=1

∆i =

j∑
i=1

C

(
(1−α1)N

(1−α1)N + 1

)i
=C ((1−α1)N)

(
1−

(
(1−α1)N

(1−α1)N + 1

)j)
internal traffic volunteers. We are supposing that one of these volunteers was allocated to opportunity j.

In that case, due to the pigeonhole principle, there must be at least one opportunity j′ – from among the

(1−α1)N opportunities that did not initially receive external traffic – with a filled capacity strictly less than

C

(
1−

(
(1−α1)N

(1−α1)N+1

)j)
upon the arrival of the last volunteer in batch j. By definition, MSVV should never

have recommended j ahead of j′, giving us a contradiction.

Next, we show that each opportunity i∈ {α1N + 1, . . . , α2N} has a filled capacity of

MSVVi,T ≤C
(

1−
(

(1−α1)N

(1−α1)N + 1

)α1N

+

i∑
j=α1N+1

1

N − j+ 1

)
. (51)

Note that in this matching setting, MSVV recommends opportunities to equalize their fill rate. Thus, after

the arrival of the α1N
th batch of volunteers, all opportunities j ∈ {α1N + 1, . . . , α2N} have an equal amount
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of filled capacity of C

(
1−

(
(1−α1)N

(1−α1)N+1

)α1N
)

, based on the analysis in the above paragraph (i.e., (51)).48

For the subsequent batches of internal traffic volunteers, i.e., for j ∈ {α1N + 1, . . . , α2N}, MSVV will maintain

an equal fill rate among all compatible opportunities by evenly distributing the ∆j =C arriving volunteers

in batch j among the N − j + 1 compatible opportunities. Thus, after the final arrival in batch j (which is

the last volunteer compatible with opportunity j), opportunity j will have a filled capacity of at most

C

(
1−

(
(1−α1)N

(1−α1)N + 1

)α1N
)

+

i∑
j=α1N+1

C

N − j+ 1
.

The remaining opportunities (i.e., opportunities i for i > α2N) will, at most, reach capacity.

To compute the fraction of total capacity filled under MSVV on I3(β), we then take an average over the fill

rate of all opportunities. To that end, we first compute the fill rate for each opportunity in the limit as the

number of opportunities approaches infinity.

For i∈ [α1N ],

FRi,T = 1−
(

(1−α1)N

(1−α1)N + 1

)i
Each opportunity i∈ {α1N + 1, . . . , α2N} has a fill rate which is bounded by:

FRi,T = 1−
(

(1−α1)N

(1−α1)N + 1

)α1N

+

i∑
j=α1N+1

1

N − j+ 1

= 1−
(

(1−α1)N

(1−α1)N + 1

)α1N

+

(1−α1)N∑
k=N−i+1

1

k

It is easy to verify algebraically that for i = α2N , the fill rate of opportunity i, FRi,T , asymptotically

approaches 1. The remaining opportunities reach capacity.

With this in mind, the fraction of filled capacity under MSVV can be computed as follows:

1

N

∑
i∈[N]

FRi,T =
1

N

(
α1N∑
i=1

(
1−

(
(1−α1)N

(1−α1)N + 1

)i)

+

α2N∑
i=α1N+1

(
1−

(
(1−α1)N

(1−α1)N + 1

)α1N

+

(1−α1)N∑
k=N−i+1

1

k

)
+

N∑
i=α2N+1

1

)
N→∞−−−−→

∫ α1

0

1− exp

( −x
1−α1

)
∂x+

∫ α2

α1

1− exp

( −α1

1−α1

)
+ log

(
1−α1

1−x

)
∂x+ (1−α2) (52)

= α1− (1−α1)

(
1− exp

( −α1

1−α1

))
+ (α2−α1)

[
1− exp

( −α1

1−α1

)]
+

∫ α2

α1

log

(
1−α1

1−x

)
∂x+ (1−α2)

= (1−α2)
(

exp
(
−α1/(1−α1)

)
+ log

(
(1−α2)/(1−α1)

))
+α2

= α2

In (52), we again use the fact that (1−1/n)nx approaches e−x as n approaches infinity. Furthermore, we use

the fact that
∑xn

k=yn 1/k approaches log(x/y) as n approaches infinity. The last equality comes from applying

the definition of α2 to see that log
(
(1−α2)/(1−α1)

)
=−exp

(
−α1/(1−α1)

)
.

48 We allow C to be sufficiently large such that there is vanishing integrality gap.
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Value of OPT on Instance I3(β): We next show that for any EFET β ∈ [1/e,1], OPT fills all capacity

on I3(β). To see this, consider a solution which matches all external traffic and matches each of the ∆i

internal traffic volunteers in batch i to opportunity i. To see why such a solution gives a perfect matching,

note that each opportunity i∈ {1, . . . , α1N} will receive C

(
1−

(
(1−α1)N

(1−α1)N+1

)i)
matches from external traffic

and ∆i = C
(

(1−α1)N

(1−α1)N+1

)i
matches from internal traffic, leading to a total of C matches. Each opportunity

i∈ {α1N + 1, . . . ,N} will receive ∆i =C matches (either all from internal traffic or all from external traffic).

Thus, each opportunity is filled to capacity under this solution, which implies that the optimal algorithm

must also fill all capacity.

Combining the upper bound on the fraction of capacity filled by MSVV with the fact that OPT fills all

capacity, we see that MSVV only fills a fraction α2 of the capacity filled by OPT on this family of instances.

This provides a parameterized upper bound on the competitive ratio of MSVV, and thereby completes the

proof of Claim 5. �

Claim 6 For any effective fraction of external traffic β ∈ [0,1], the competitive ratio of MSVV is at most

min
α4∈[0,β]

1− 1−β
1−α4

(
α5 + (1−α6) log

(
1−α5

1−α6

))
(53)

where α5 = min{1−α4,
α4(β−α4)

1−β } and α6 = min{1−α4,1− (1−α5)/e}.

Consider a family of instances I4(β), parameterized by the EFET β. Each instance has N opportunities,

each with identical large capacity C. Each instance in this family is also parameterized by α4 ∈ [0, β], which

separates the N into subsets of size (1−α4)N and α4N .49 These two subsets will receive external traffic at

different times: the former subset will receive external traffic at the beginning of the arrival sequence, while

the latter will receive external traffic at the end of the arrival sequence. The full arrival sequence consists

of NC volunteers, all of whom have conversion probabilities of 1 or 0. If µi,t = 1 (resp. 0), we will refer to

opportunity i and volunteer t as compatible (resp. incompatible).

Fixing an EFET β and a parameter α4, the arrival sequence begins with β−α4

1−α4
C external traffic volun-

teers for each opportunity i ∈ {1, . . . , (1−α4)N} (who are compatible with their targeted opportunity). In

total, this comprises (β − α4)NC external traffic volunteers. Next, the internal traffic arrives, which con-

sists of (1 − β)NC volunteers. These volunteers can be separated into (1 − α4)N batches of size 1−β
1−α4

C

sequentially-arriving homogeneous volunteers, such that the volunteers in the ith batch are compatible with

all opportunities j ≥ i. Finally, additional external traffic arrives, with C compatible volunteers for each

opportunity i∈ {(1−α4)N + 1, . . . ,N}.
We first note that the EFET in such instances is equal to β. To see that this is indeed the case, note that

the opportunities in the first subset (those that initially receive external traffic) receive a total filled capacity

of (β−α4)NC, while the opportunities in the other subset (those that receive external traffic at the end of

the arrival sequence) receive a total filled capacity of α4NC. In sum, this represents a fraction β of total

capacity. We now proceed to assessing the value of MSVV and OPT on this family of instances.

49 We assume that α4NC is an integer. This assumption does not impact the upper bound in the statement of Claim
6, as the expression comes from taking the limit as N approaches ∞.
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Value of MSVV on Instance I4(β): We now analyze the value of MSVV on this instance. All the initial external

traffic will be allocated to the appropriate opportunity. At the conclusion of this process, each opportunity

i ∈ {1, . . . , (1−α4)N} will have a filled capacity of β−α4

1−α4
C. Based on the allocation rule of MSVV, at first all

the internal traffic will be exclusively allocated (evenly) across the other α4 compatible opportunities, i.e.,

opportunities i∈ {(1−α4)N + 1, . . . ,N}, since those opportunities will have less filled capacity. (Recall that

MSVV defines an opportunity’s fill rate as the ratio of filled capacity to total capacity, regardless of the source

of the volunteers.) If there is enough internal traffic to fill all opportunities to an equal fill rate of β−α4

1−α4
, then

the remaining internal traffic will be evenly split among compatible opportunities, until the internal traffic

runs out or the remaining compatible opportunities have all reached capacity. Finally, the external traffic

fills opportunities i∈ {(1−α4)N + 1, . . . ,N} to capacity.

This allocation corresponds to two different cases, based on the amount of internal traffic relative to the

parameter α3. To help define these cases, we introduce α5 := min{1−α4,
α4(β−α4)

1−β }. As we will later show,

α5N represents the highest-indexed opportunity that does not receive internal traffic under MSVV. In each

case, we will demonstrate that the total amount of filled capacity is given by

α5N∑
i=1

β−α4

1−α4

C +

(1−α4)N∑
i=α5N+1

min

{(
β−α4

1−α4

+

i∑
j=α5N+1

1−β
1−α4

· C

N − j+ 1

)
,C

}
+

N∑
i=(1−α4)N+1

C.

In case (i), the amount of internal traffic is insufficient to equalize the fill rate of all opportunities, i.e.,

(1−β)C ≤ α4

(
β−α4

1−α4
C
)

. Consequently, MSVV will simply divide all internal traffic equally among opportunities

i ∈ {(1− α4)N + 1, . . . ,N}. These opportunities will then be filled to capacity by external traffic. We note

that α5 = 1−α4, since in this case, 1−α4 cannot exceed α4(β−α4)

1−β . Therefore, the total filled capacity in this

case is given by

α5N∑
i=1

β−α4

1−α4

C +

(1−α4)N∑
i=α5N+1

min

{(
β−α4

1−α4

+

i∑
j=α5N+1

1−β
1−α4

· C

N − j+ 1

)
,C

}
+

N∑
i=(1−α4)N+1

C,

as desired. We note that in this case, the middle sum is empty, as α5 = 1−α4.

In case (ii), the amount of internal traffic is sufficient to equalize all fill rates, i.e., if (1−β)C >α4

(
β−α4

1−α4
C
)

(which implies α5 = α4(β−α4)

1−β ). In this case, the opportunities will all reach an equal fill rate after the arrival

of the α5N
th batch of internal traffic. From this point forward, internal traffic will be split among the

compatible opportunities, but none of the first α5N opportunities are compatible with remaining arrivals.

As such, the total filled capacity is given by

α5N∑
i=1

β−α4

1−α4

C +

(1−α4)N∑
i=α5N+1

min

{(
β−α4

1−α4

+

i∑
j=α5N+1

1−β
1−α4

· C

N − j+ 1

)
,C

}
+

N∑
i=(1−α4)N+1

C.

We now compute the fraction of total capacity that is filled under MSVV. To help in this calculation, we

define α6 := min{1−α4,1− (1−α5)/e}, which (asymptotically) represents the fraction of opportunities that

are not filled to capacity under MSVV.

MSVV(I4(β))

NC
=

1

NC

[
α5N∑
i=1

β−α4

1−α4

C +

(1−α4)N∑
i=α5N+1

min

{(
β−α4

1−α4

+

i∑
j=α5N+1

1−β
1−α4

· C

N − j+ 1

)
,C

}



Manshadi et al.: Algorithms for Multi-Channel Traffic 51

+

N∑
i=(1−α4)N+1

C

 (54)

N→∞−−−−→
(
β−α4

1−α4

)
α5 +

∫ 1−α4

α5

min

{
β−α4

1−α4

+
1−β
1−α4

log

(
1−α5

1−x

)
,1

}
∂x+α4 (55)

=

(
β−α4

1−α4

)
α5 +

∫ α6

α5

β−α4

1−α4

+
1−β
1−α4

log

(
1−α5

1−x

)
∂x+

∫ 1−α4

α6

1 ∂x+α4 (56)

=

(
β−α4

1−α4

)
α6 +

1−β
1−α4

∫ α6

α5

log

(
1−α5

1−x

)
∂x+ (1−α6) (57)

=
β−α4

1−α4

α6 +
1−β
1−α4

(
α6−α5− (1−α6) log

(
1−α5

1−α6

))
+ (1−α6) (58)

=1− 1−β
1−α4

(
α5 + (1−α6) log

(
1−α5

1−α6

))
(59)

Equality (55) uses the fact that
∑xn

k=yn 1/k approaches log(x/y) as n approaches infinity. Equality (58)

comes from applying the definition of α6 and noting that for x≥ α6, 1≤ β−α4

1−α4
+ 1−β

1−α4
log
(

1−α5

1−x

)
. Taking the

integrals and simplifying, we arrive at the final expression, which represents the fraction of total capacity

that is filled under MSVV.

Value of OPT on Instance I4(β): We now show that OPT fills all capacity on this instance. Consider a

solution that allocates all external traffic to its targeted opportunity, and allocates the ith batch of internal

traffic to opportunity i. Under this solution, each opportunity i∈ {1, . . . , (1−α4)N} receives β−α4

1−α4
C matches

from external traffic and 1−β
1−α4

C matches from internal traffic, thereby reaching its capacity of C. Furthermore,

each opportunity i ∈ {(1 − α4)N + 1, . . . ,N} receives C matches from external traffic. Thus, under this

solution, all capacity is filled, which means that OPT must also fill all capacity on this instance.

This establishes a competitive ratio of 1− 1−β
1−α4

(
α5 + (1−α6) log

(
1−α5

1−α6

))
, as desired. Taking the minimum

over all α4 ∈ [0, β] completes the proof of the claim. �

Both claims establish an upper bound on the competitive ratio of MSVV.50 In Figure 2b of Section 4.2, we

illustrate the piecewise-defined upper bound on MSVV that results from taking the minimum for any particular

EFET β > 1/e, along with the universal upper bound of 1− 1/e for β ≤ 1/e. �

A.6. Omitted Details in the Proof of Theorem 2 (Section 4.4)

A.6.1. Proof of Lemma 3 The proof of Lemma 3 follows from the definition of the pseudo-rewards Lt

and Ki (which we replicate below for ease of reference) as well as the definition of the AC algorithm.

Lt =

{∑
i∈[n]ψ(FRi,t−1)1[ξ̃t(S

AC
t ) = i], t∈ Vext ∪V0∑

i∈[n]ψ(FRi,t−1)1[ξt(S
OPT
t ) = i], t∈ V int \ V0

Ki =
∑
t∈[T ]

(1−ψ(FRi,t−1))1[ξ̃t(S
AC
t ) = i]

Recall that ξ̃t(S
AC
t ) represents the opportunity that volunteer t contributes to under AC. To be precise, if

opportunity ξt(S
AC
t ) has remaining capacity at time t, then ξ̃t(S

AC
t ) = ξt(S

AC
t ). Otherwise, ξ̃t(S

AC
t ) = 0. In

addition, recall that V0 represents the set of arriving internal traffic for which OPT recommends opportunity 0.

50 To show that these upper bounds hold for any minimum capacity c, it suffices to add an additional opportunity
with capacity c for which volunteers have conversion probability of 0. The performance of both OPT and MSVV are
unchanged, and the EFET remains the same in the limit as N approaches infinity.
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Based on these definitions,

Eω[AC] = Eω

 ∑
t∈V int\V0

∑
i∈[n]

1[ξ̃t(S
AC
t ) = i] +

∑
t∈Vext∪V0

∑
i∈[n]

1[ξ̃t(S
AC
t ) = i]

 (60)

=Eω

∑
i∈[n]

 ∑
t∈V int\V0

ψ(FRi,t−1)1[ξ̃t(S
AC
t ) = i] +

∑
t∈V int\V0

(1−ψ(FRi,t−1))1[ξ̃t(S
AC
t ) = i]

+
∑

t∈Vext∪V0

ψ(FRi,t−1)1[ξ̃t(S
AC
t ) = i] +

∑
t∈Vext∪V0

(1−ψ(FRi,t−1))1[ξ̃t(S
AC
t ) = i]

)]
(61)

=Eω

∑
i∈[n]

∑
t∈V int\V0

ψ(FRi,t−1)1[ξ̃t(S
AC
t ) = i]

+Eω

 ∑
t∈Vext∪V0

Lt +
∑
i∈[n]

Ki

 (62)

=Eω

∑
i∈[n]

∑
t∈V int\V0

ψ(FRi,t−1)1[ξt(S
AC
t ) = i]

+Eω

 ∑
t∈Vext∪V0

Lt +
∑
i∈[n]

Ki

 (63)

≥Eω

∑
i∈[n]

∑
t∈V int\V0

ψ(FRi,t−1)1[ξt(S
OPT
t ) = i]

+Eω

 ∑
t∈Vext∪V0

Lt +
∑
i∈[n]

Ki

 (64)

=Eω

∑
t∈[T ]

Lt +
∑
i∈[n]

Ki

 (65)

All steps are algebraic except for (63) and (64). To establish the former, we will show that∑
i∈[n]ψ(FRi,t−1)1[ξt(S

AC
t ) = i] =

∑
i∈[n]ψ(FRi,t−1)1[ξ̃t(S

AC
t ) = i]. We consider two cases. First, if

FRξt(SAC
t ),t−1 < 1, then ξt(S

AC
t ) = ξ̃t(S

AC
t ) and the equality holds. Alternatively, if FRξt(SAC

t ),t−1 = 1, then

ξ̃t(S
AC
t ) = 0 and ψ(FRξt(SAC

t ),t−1) = 0. Thus, both summations equal 0, and the equality holds.

Inequality (64) follows from the AC algorithm’s optimality condition (see Algorithm 2), which ensures that

it recommends the opportunity that maximizes the weighted probability of generating a sign-up (where the

weight for opportunity i at time t is given by ψ(FRi,t−1)). Since the recommendation provided by OPT to

any volunteer must be independent of their sign-up realization, the inequality holds. Applying the definition

of the pseudo-rewards Lt for t∈ V int \ V0 completes the proof of Lemma 3.

A.6.2. Proof of Lemma 4 We will prove a stronger version of this lemma by establishing the following

inequality along any fixed sample path ω:

∑
t∈[T ]

Lt +
∑
i∈[n]

Ki ≥ e−1/c
∑
i∈[n]

(
ACexti,T + AC0

i,T + OPTinti,T ·ψ
(

ACinti,T

ci− ACexti,T

)

+ci

(
1−ψ

(
ACinti,T − AC0

i,T

ci

)
− 1/e

))
,

We proceed by separately deriving lower bounds on the Lt pseudo-rewards and the Ki pseudo-rewards.

For the former, ∑
t∈[T ]

Lt =
∑

t∈Vext∪V0

Lt +
∑

t∈V int\V0

Lt (66)

=
∑

t∈Vext∪V0

Lt +
∑

t∈V int\V0

∑
i∈[n]

ψ(FRi,t−1)1[ξt(S
OPT
t ) = i] (67)
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≥
∑

t∈Vext∪V0

Lt +
∑

t∈V int\V0

∑
i∈[n]

ψ(FRi,T )1[ξt(S
OPT
t ) = i] (68)

=
∑

t∈Vext∪V0

Lt +
∑
i∈[n]

ψ

(
ACinti,T

ci− ACexti,T

)
OPTinti,T (69)

Equality in (67) follows from the definition of Lt. Inequality in (68) holds because ψ is a decreasing function

in its argument, and FRi,T ≥FRi,t−1 for all t ∈ [T ]. Equality in (69) comes from applying the definition of

the fill rate as well as the fact that OPTinti,T =
∑

t∈V int\V0 1[ξt(S
OPT
t ) = i].

We next turn our attention to the Ki pseudo-rewards, which we further separate into two summations:∑
i∈[n]

Ki =
∑
i∈[n]

∑
t∈Vext∪V0

(1−ψ(FRi,t−1))1[ξ̃t(S
AC
t ) = i] +

∑
i∈[n]

∑
t∈V int\V0

(1−ψ(FRi,t−1))1[ξ̃t(S
AC
t ) = i] (70)

We note that the first summation has a nice relationship with the first term in (69). To see this, recall that

we define AC0
i,T =

∑
t∈V0 1[ξ̃t(S

AC
t ) = i] as the sum of sign-ups under AC for opportunity i by volunteers who

did not receive a recommendation under OPT. Then,

∑
i∈[n]

∑
t∈Vext∪V0

(1−ψ(FRi,t−1))1[ξ̃t(S
AC
t ) = i] =

∑
i∈[n]

( ∑
t∈Vext∪V0

1[ξ̃t(S
AC
t ) = i]−ψ(FRi,t−1)1[ξ̃t(S

AC
t ) = i]

)
(71)

=
∑
i∈[n]

ACexti,T + AC0
i,T −

∑
t∈Vext∪V0

Lt (72)

Now focusing on the second summation, which deals with internal traffic for which OPT provides a recom-

mendation:∑
i∈[n]

∑
t∈V int\V0

(1−ψ(FRi,t−1))1[ξ̃t(S
AC
t ) = i] ≥

∑
i∈[n]

∑
t∈V int\V0

(
1−ψ

(
ACinti,t−1

ci

))
1[ξ̃t(S

AC
t ) = i] (73)

≥
∑
i∈[n]

∑
k∈[ACint

i,T
−AC0

i,T
]

(
1−ψ

(
k− 1

ci

))
(74)

≥
∑
i∈[n]

e−1/ci
∑

k∈[ACint
i,T
−AC0

i,T
]

(
1−ψ

(
k

ci

))
(75)

≥ e−1/c
∑
i∈[n]

∫ ACinti,T−AC
0
i,T

0

1−ψ(x/ci) ∂x (76)

= e−1/c
∑
i∈[n]

ci

(
1−ψ

(
ACinti,T − AC0

i,T

ci

)
− 1/e

)
(77)

In (73), we use the fact that ψ is decreasing and
ACinti,t−1

ci
≤ ACinti,t−1

ci−ACexti,t−1
= FRi,t−1. We then further reduce the

argument in ψ in (74) by noting that the lowest possible values of ACinti,t are {1, . . . ,ACinti,T −AC0
i,T}, since ACinti,t

increases by 1 for any t∈ V int where ξ̃t(S
AC
t ) = i.

The summation in (74) represents a left Reimann sum of an increasing function. In (75), we utilize the fact

that for any k, 1−ψ((k− 1)/ci)≥ e1/c(1−ψ(k/ci)). As the summation in (75) is now a right Reimann sum

of an increasing function, we bound the sum with an appropriate integral in (76). We evaluate the integral

to arrive at (77).
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Combining (69), (72), and (77) along with the observation that e−1/c < 1, we see that for any sample path

ω, ∑
t∈[T ]

Lt +
∑
i∈[n]

Ki ≥ e−1/c
∑
i∈[n]

(
ACexti,T + AC0

i,T + OPTinti,Tψ

(
ACinti,T

ci− ACexti,T

)

+ci

(
1−ψ

(
ACinti,T − AC0

i,T

ci

)
− 1/e

))
Taking expectations over all sample paths completes the proof of Lemma 4 �

A.6.3. Proof of Lemma 5: To prove Lemma 5, it is sufficient to show that for any instance I, we can

construct a feasible solution to (MP) which has a value of Eω[AC]

Eω[OPT]
. (We remind that AC and OPT depend on

both the instance I and the sample path ω, but we suppress that dependence to ease exposition). For ease

of reference, we reproduce (MP) below.

Given an instance I, the inputs to (MP) are the set of opportunities S and the set of feasible sample
paths Ω, along with its associated probability measure.

(MP) uses the set of variables ~x∈R3×n×|Ω|
≥0 and ~y ∈R2×n×|Ω|

≥0 \~0, along with z ∈ [0,1]

min
~x,~y, z

z (MP)

s.t. ∀i,ω, ci ≥ y1,i,ω + y2,i,ω (i) ci ≥ x1,i,ω +x2,i,ω (ii) x2,i,ω ≥ x3,i,ω (iii)

ci = x1,i,ω +x2,i,ω OR x1,i,ω = y1,i,ω (iv)

Eω

[∑
i∈[n] x1,i,ω +x2,i,ω

]
≤ z

∑
i∈[n] ci (v)

Eω

[∑
i∈[n] x1,i,ω +x3,i,ω

]
≥ (β−σ+ z)

∑
i∈[n] ci (vi)

Eω

[∑
i∈[n] x1,i,ω +x3,i,ω + y2,i,ω ·ψ

(
x2,i,ω

ci−x1,i,ω

)
+ ci

(
1−ψ

(
x2,i,ω−x3,i,ω

ci

)
− 1/e

)]
≤ e1/czEω

[∑
i∈[n] y1,i,ω + y2,i,ω

]
(vii)

To construct such a feasible solution, we define the values of ~x based on the value of AC along a particular

sample path.51 Specifically, x1,i,ω (resp. x2,i,ω) represents the amount of external traffic (resp. internal traffic)

that contributes to opportunity i under AC, given by ACexti,T (resp. ACinti,T ). The third component, x3,i,ω, accounts

for the value of AC on the volunteers for which OPT recommends opportunity 0, which we denote as AC0
i,T :=∑

t∈V0 1[ξ̃t(S
AC
t ) = i]. In a similar fashion, we define the values of ~y based on the value of OPT along a particular

sample path. Specifically, y1,i,ω (resp. y2,i,ω) represents the amount of external traffic (resp. internal traffic)

that contributes to opportunity i under OPT, given by OPTexti,T (resp. OPTinti,T ). Finally, we define z as the ratio

between the expected value of AC and the expected value of OPT on this instance.

51 We emphasize that fixing a sample path ω, the entire sequence of opportunity recommendations and volunteer
sign-ups are entirely deterministic under both AC and OPT. To see this, note that for any fixed history, the AC

algorithm makes a deterministic recommendation, and the volunteer’s decision in response to that recommendation
is deterministic, conditional on ω. Similarly, OPT makes a deterministic recommendation for any fixed history and
fixed inputs. The history as well as inputs (i.e., the instance I as well as the sign-up decisions of all external traffic)
are deterministic for any fixed ω.
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To summarize, we consider the following feasible solution:

x1,i,ω = ACexti,T , x2,i,ω = ACinti,T , x3,i,ω = AC0
i,T ,

y1,i,ω = OPTexti,T , y2,i,ω = OPTinti,T , z =
Eω[AC]

Eω[OPT]

If such a solution is feasible, then the optimal value of (MP) is at most Eω[AC]

Eω[OPT]
, since the optimal value of

(MP) is less than or equal to the value of any feasible solution. We proceed by sequentially showing that

each constraint is met under this candidate solution.52

First, observe that neither AC nor OPT can exceed the capacity of the opportunity along any sample path

ω. Hence, constraints (i) and (ii) are never violated. Similarly, ACinti,T is the sum of sign-ups from internal

traffic under AC, while AC0
i,T is the sum of sign-ups from a subset of internal traffic under AC. Thus, constraint

(iii) must hold.

For constraint (iv), we first fix an opportunity i. Based on Definition 1, OPT will never use internal traffic

to fill capacity that would otherwise be filled by external traffic. As a consequence, OPT uses all external

traffic for i (or fills opportunity i with external traffic) along each sample path. In contrast, AC may use

internal traffic to fill capacity that could otherwise have been filled by external traffic. In other words, if an

opportunity reaches full capacity under AC, then some external traffic may be excessive. Thus, along a fixed

sample path, either AC uses the same amount of external traffic as OPT for opportunity i, or opportunity i

reaches capacity under AC.53 These two possibilities give rise to constraint (iv).

Constraint (v) holds based on the definitions of ~x,~y, and z:

z =
Eω[AC]

Eω[OPT]
=

Eω[
∑

i∈[n] x1,i,ω +x2,i,ω]

Eω[
∑

i∈[n] y1,i,ω + y2,i,ω]
≥

Eω[
∑

i∈[n] x1,i,ω +x2,i,ω]∑
i∈[n] ci

.

We now consider constraint (vi), which crucially provides a lower bound on the number of sign-ups gener-

ated by AC where OPT either generates a sign-up to the same opportunity or does not generate a sign-up at

all. Fixing a sample path and an opportunity, note that the total amount of opportunity i’s capacity filled by

AC in periods t∈ V int \V0 is given by x2,i,ω−x3,i,ω, while the total amount of opportunity i’s capacity filled

by OPT in periods t∈ V int \V0 is given by y2,i,ω. Furthermore, for all t∈ V int \V0, OPT provides a recommen-

dation, which means it fills a unit of capacity with probability at least µ
t
, while AC will fill a unit of capacity

with probability at most µ̄t. As a consequence, x2,i,ω−x3,i,ω ≤ σy2,i,ω, or equivalently, x2,i,ω ≤ σy2,i,ω +x3,i,ω

Based on the constructed values of ~x,~y, and z, as well as the upper bound on x2,i,ω identified above,

Eω

∑
i∈[n]

x1,i,ω

= z ·Eω

∑
i∈[n]

y1,i,ω + y2,i,ω

−Eω

∑
i∈[n]

x2,i,ω

 (78)

≥ z ·Eω

∑
i∈[n]

y1,i,ω + y2,i,ω

−Eω

∑
i∈[n]

σ · y2,i,ω +x3,i,ω

 (79)

52 We remark that we restrict our attention to instances where Eω[OPT]> 0; thus, ~y can be constrained to have at
least one strictly positive element.

53 By our convention for external traffic, AC will always recommend the volunteer’s targeted opportunity i∗t . However,
if this opportunity has already reached capacity, the sign-up does not fill any capacity.
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=Eω

∑
i∈[n]

y1,i,ω

−Eω

∑
i∈[n]

(1− z) · y1,i,ω + (σ− z) · y2,i,ω

−Eω

∑
i∈[n]

x3,i,ω

 (80)

≥Eω

∑
i∈[n]

y1,i,ω

− (σ− z) ·Eω

∑
i∈[n]

y1,i,ω + y2,i,ω

−Eω

∑
i∈[n]

x3,i,ω

 (81)

≥ β
∑
i∈[n]

ci− (σ− z)
∑
i∈[n]

ci−Eω

∑
i∈[n]

x3,i,ω

 . (82)

Inequality (81) uses the fact that σ≥ 1. The final inequality uses the fact that Eω

[∑
i∈[n] y1,i,ω

]
= β

∑
i∈[n] ci

based on the definitions of the optimal clairvoyant algorithm OPT and the EFET β (see Definitions 1 and 2).

This final inequality establishes that our proposed solution respects constraint (vi).

Finally, we turn our attention to constraint (vii). Given the constructed values of ~x,~y, and z,

e1/czEω

∑
i∈[n]

y1,i,ω + y2,i,ω

= e1/cEω

∑
i∈[n]

x1,i,ω +x2,i,ω

 (83)

≥ e1/cEω

∑
t∈[T ]

Lt +
∑
i∈[n]

Ki

 (84)

≥Eω

∑
i∈[n]

x1,i,ω +x3,i,ω + y2,i,ωψ

(
x2,i,ω

ci−x1,i,ω

)

+ci

(
1−ψ

(
x2,i,ω −x3,i,ω

ci

)
− 1/e

)]
(85)

Inequality (84) comes from applying Lemma 3, while (85) comes from applying Lemma 4. This establishes

that constraint (vii) is met under our proposed solution.

In aggregate, we have shown that the proposed solution of ~x,~y, and z are feasible in (MP). This solution

attains a value of z = Eω[AC(I,ω)]

Eω[OPT(I,ω)]
, which completes the proof of Lemma 5. �

A.6.4. Proof of Lemma 6 To prove Lemma 6, we will derive a valid lower bound on the value of (MP)

(for a fixed instance I) that is parameterized by the EFET β, the minimum capacity c, and the maximum

heterogeneity across a volunteer’s preferences σ. We then argue that our lower bound is uniform given β, c,

and σ, in that it is valid for any given instance I with those parameters.

To derive the lower bound on the value of (MP), we propose a series of transformations to the optimization

problem that will ultimately result in a solvable program. The solution to that transformed program serves as

a lower bound on (MP), and its value can be characterized as a function that depends only on the EFET β,

the minimum capacity c, and the maximum heterogeneity across a volunteer’s preferences σ. We divide this

process into five (algebraic) steps, each of which results in a new formulation for the optimization problem.

First, in Step (a) we show there is no feasible solution for z < e−1/c(1− 1/e). Thus, we create a new

program ((MPa)) where we restrict the feasible domain. The value of this new program serves as a lower

bound on the value of (MP). In Step (b), we show that in (MPa), it is without loss of generality to consider

only feasible solutions where constraint (i) binds for all i and ω pairs. Based on this, we constuct a new

program (MPb) which replaces the inequality in constraint (i) with an equality. In Step (c), we relax (MPb)



Manshadi et al.: Algorithms for Multi-Channel Traffic 57

by replacing constraints (i), (iv), and (vii) with a unified constraint (viii). We define this new program as

(MPc). In Step (d), we transform (MPc) by replacing the inequalities in constraints (iii), (v), and (vi)

with three equalities, thereby creating the program (MPd). Finally, in Step (e), we convexify the simplified

program from the previous step, to arrive at the (solvable) (MPe). We highlight that the value of each new

program serves as a lower bound on the value of the previous program; i.e., the value of (MPb) is a lower

bound on the value of (MPa), which is a lower bound on the value of (MP).

Step (a): Suppose for a moment that there is a feasible solution where z < e−1/c(1− 1/e). We will show

a contradiction by demonstrating that if such a solution satisfies constraints (ii) and (iv), it cannot satisfy

constraint (vii). We begin by fixing a particular opportunity i and a particular sample path ω. If constraint

(iv) holds, there are two cases to consider: either x1,i,ω + x2,i,ω = ci or x1,i,ω = y1,i,ω. In the first case, we

have that ψ
(

x2,i,ω

ci−x1,i,ω

)
= 0, as ψ(1) = 0 by definition. Note that the left hand side of constraint (vii) is a

weighted summation over opportunities and sample paths, where the weights depend on the probability of

the sample path. Let us consider the term in that summation which corresponds to the fixed opportunity i

and the fixed sample path ω. This term is bounded by

x1,i,ω +x3,i,ω + ci(1−ψ
(
x2,i,ω −x3,i,ω

ci

)
− 1/e) = x1,i,ω +x3,i,ω + ciexp

(
x2,i,ω −x3,i,ω

ci
− 1

)
− ci
e

(86)

= x1,i,ω +x3,i,ω + ciexp

(−x1,i,ω −x3,i,ω

ci

)
− ci
e

(87)

≥ x1,i,ω +x3,i,ω + ci

(
1− x1,i,ω

ci
− x3,i,ω

ci

)
− ci
e

(88)

≥ (1− 1/e)ci (89)

≥ (1− 1/e)(y1,i,ω + y2,i,ω) (90)

Inequality (88) comes from the fact that exp(−x)≥ 1−x for all x, and the remaining steps are algebraic.

We now address the second case, where x1,iω = y1,i,ω for this particular i and ω. Let us again consider the

term in the summation on the left hand side of constraint (vii) which corresponds to the fixed opportunity

i and the fixed sample path ω. This term is bounded by

x1,i,ω +x3,i,ω + y2,i,ωψ

(
x2,i,ω

ci−x1,i,ω

)
+ ci

(
1−ψ

(
x2,i,ω −x3,i,ω

ci

)
− 1/e

)
= y1,i,ω +x3,i,ω + y2,i,ω − y2,i,ωexp

(
x2,i,ω

ci− y1,i,ω

− 1

)
+ ciexp

(
x2,i,ω −x3,i,ω

ci
− 1

)
− ci/e (91)

≥ y1,i,ω + y2,i,ω − y2,i,ωexp

(
x2,i,ω

ci− y1,i,ω

− 1

)
+ ciexp

(
x2,i,ω

ci
− 1

)
− ci/e (92)

The second inequality holds because the expression is increasing in x3,i,ω. Note that the right hand side

of (92) is quasi-concave in x2,i,ω. We demonstrate quasi-concavity by first noting that the expression is a

continuously differentiable function of x2,i,ω, and then by establishing that this function cannot have a local

minimum. To prove the latter, we begin by calculating the derivative of the right hand side (RHS) with

respect to x2,i,ω.
∂

∂x2,i,ω

RHS =
−y2,i,ω

ci− y1,i,ω

exp

(
x2,i,ω

ci− y1,i,ω

− 1

)
+ exp

(
x2,i,ω

ci
− 1

)
,
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which is equal to 0 only when
y2,i,ω

ci−y1,i,ω
exp (x2,i,ω/(ci− y1,i,ω)− 1) = exp(x2,i,ω/ci− 1). When this first-order

condition holds, we see that the second derivative of the right hand side with respect to x2,i,ω must be strictly

negative:

∂2

∂x2
2,i,ω

RHS =
−y2,i,ω

(ci− y1,i,ω)2
exp

(
x2,i,ω

ci− y1,i,ω

− 1

)
+

1

ci
exp

(
x2,i,ω

ci
− 1

)
=

−y1,i,ω

ci(ci− y1,i,ω)
exp

(
x2,i,ω

ci

)
Hence, this expression is quasi-concave in x2,i,ω, and as a consequence is minimized at one of the extreme

points of x2,i,ω.

The two extreme points for x2,i,ω are 0 and ci−x1,i,ω (based on constraint (ii)). If x2,i,ω = 0, the RHS of

(92) is equal to y1,i,ω + (1− 1/e)y2,i,ω. If x2,i,ω = ci−x1,i,ω, we have returned to the first case for constraint

(iv), where we established a lower bound of (1− 1/e)(y1,i,ω + y2,i,ω) in (90).

Therefore, we have shown that for any particular i and ω, if constraints (ii) and (iv) are satisfied,

x1,i,ω + (y2,i,ω +x3,i,ω)ψ

(
x2,i,ω

ci−x1,i,ω

)
+ ci

(
1−ψ

(
x2,i,ω

ci

)
− 1/e

)
≥ (1− 1/e)(y1,i,ω + y2,i,ω)

Summing this up over all opportunities and taking expectations over all sample paths,54 we see that constraint

(vii) must be violated for any z < e−1/c(1− 1/e). This completes Step (a).

In the subsequent step, we will work with a modified version of (MP), which we refer to as (MPa) (shown

below), that restricts the domain by imposing that z ≥ e−1/c(1−1/e). Any feasible solution to (MP) remains

feasible in (MPa), and thus the value of (MPa) is a valid lower bound on the value of (MP).

Given an instance I, the inputs to (MPa) are the set of opportunities S, the EFET β, the MCPR σ,
and the set of feasible sample paths Ω, along with its associated probability measure.

(MPa) uses the set of variables ~x∈R3×n×|Ω|
≥0 and ~y ∈R2×n×|Ω|

≥0 \~0, along with z ∈ [e−1/c(1− 1/e),1]

min
~x,~y, z

z (MPa)

s.t. ∀i,ω, ci ≥ y1,i,ω + y2,i,ω (i) ci ≥ x1,i,ω +x2,i,ω (ii) x2,i,ω ≥ x3,i,ω (iii)

ci = x1,i,ω +x2,i,ω OR x1,i,ω = y1,i,ω (iv)

Eω

[∑
i∈[n] x1,i,ω +x2,i,ω

]
≤ z

∑
i∈[n] ci (v)

Eω

[∑
i∈[n] x1,i,ω +x3,i,ω

]
≥ (β−σ+ z)

∑
i∈[n] ci (vi)

Eω

[∑
i∈[n] x1,i,ω +x3,i,ω + y2,i,ω ·ψ

(
x2,i,ω

ci−x1,i,ω

)
+ ci

(
1−ψ

(
x2,i,ω−x3,i,ω

ci

)
− 1/e

)]
≤ e1/czEω

[∑
i∈[n] y1,i,ω + y2,i,ω

]
(vii)

Step (b): In this step, we will show that we can restrict our attention to feasible solutions of (MPa) where

constraint (i) is tight for all i and ω without loss of optimality. Consider any feasible solution {~x,~y, z} where

constraint (i) is loose for some i,ω pair. We will construct a new solution {~x′, ~y′, z′} which is feasible and has

54 Because we restrict our attention to arrival sequences where E[OPT] is non-zero, this includes at least one opportunity
and sample path for which y1,i,ω + y2,i,ω > 0.
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the same objective value. Let y′2,i,ω = ci− y1,i,ω. The other decision variables are unchanged: y′1,i,ω = y1,i,ω,

~x′ = ~x, and z′ = z.

The objective value is identical in both solutions, and only constraints (i) and (vii) are impacted by

(weakly) increasing y2,i,ω to y′2,i,ω. Constraint (i) is satisfied by construction, and constraint (vii) remains

satisfied because for all x∈ [0,1], ψ(x)≤ 1−1/e≤ e1/cz, where the second inequality holds as a result of the

restricted domain on z imposed in (MPa). This completes Step (b).

In the subsequent step, we will work with a modified version of (MPa), which we refer to as (MPb)

(shown below), that replaces the inequality in constraint (i) with equality. As demonstrated in this step, the

tightening of constraint (i) is without loss of optimality; thus, the value of (MPb) is a valid lower bound on

the value of (MPa).

Given an instance I, the inputs to (MPb) are the set of opportunities S, the EFET β, the MCPR σ,
and the set of feasible sample paths Ω, along with its associated probability measure.

(MPb) uses the set of variables ~x∈R3×n×|Ω|
≥0 and ~y ∈R2×n×|Ω|

≥0 \~0, along with z ∈ [e−1/c(1− 1/e),1]

min
~x,~y, z

z (MPb)

s.t. ∀i,ω, ci = y1,i,ω + y2,i,ω (i) ci ≥ x1,i,ω +x2,i,ω (ii) x2,i,ω ≥ x3,i,ω (iii)

ci = x1,i,ω +x2,i,ω OR x1,i,ω = y1,i,ω (iv)

Eω

[∑
i∈[n] x1,i,ω +x2,i,ω

]
≤ z

∑
i∈[n] ci (v)

Eω

[∑
i∈[n] x1,i,ω +x3,i,ω

]
≥ (β−σ+ z)

∑
i∈[n] ci (vi)

Eω

[∑
i∈[n] x1,i,ω +x3,i,ω + y2,i,ω ·ψ

(
x2,i,ω

ci−x1,i,ω

)
+ ci

(
1−ψ

(
x2,i,ω−x3,i,ω

ci

)
− 1/e

)]
≤ e1/czEω

[∑
i∈[n] y1,i,ω + y2,i,ω

]
(vii)

Step (c): We will show that we can relax (MPb) by replacing constraints (i), (iv), and (vii) with the

following constraint:

Eω

∑
i∈[n]

ciĝ

(
x1,i,ω

ci
,
x2,i,ω

ci
,
x3,i,ω

ci

)≤ e1/cz
∑
i∈[n]

ci, (viii)

where

ĝ(x1, x2, x3) = x1 +x3 + (1−x1) ·ψ
(

x2

1−x1

)
+ 1−ψ (x2−x3)− 1/e. (93)

This relaxation results in a new program, which we refer to as (MPc). We now prove that the value of

(MPc) provides a lower bound on the value of (MPb) by showing that any solution which satisfies constraints

(i), (iv), and (vii) must necessarily satisfy constraint (viii). In (MPb), constraint (i) binds, which means

that the right hand sides of constraints (vii) and (viii) are identical. The difference between the left hand

sides of constraints (vii) and (viii) is simply the expected sum of (y2,i,ω − ci + x1,i,ω) · ψ
(

x2,i,ω

ci−x1,i,ω

)
. Given

a solution where constraint (iv) is satisfied for every i,ω pair, we must have either ψ
(

x2,i,ω

ci−x1,i,ω

)
= 0, or
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ci − x1,i,ω = ci − y1,i,ω = y2,i,ω. (The second equality comes from the fact that constraint (i) binds.) As a

consequence, the difference between the left hand sides of constraints (vii) and (viii) is 0. Thus, any solution

satisfying constraints (i), (iv), and (vii) must also satisfy constraint (viii). This completes step (c), and in

the subsequent step, we will work with (MPc) (shown below). We note that the variables ~y do not appear in

either the objective or the constraints of (MPc). As a result, we remove these variables from the program.

Given an instance I, the inputs to (MPc) are the set of opportunities S, the EFET β, the MCPR σ,
and the set of feasible sample paths Ω, along with its associated probability measure.

(MPc) uses the set of variables ~x∈R3×n×|Ω|
≥0 and z ∈ [e−1/c(1− 1/e),1]

min
~x, z

z (MPc)

s.t. ∀i,ω, ci ≥ x1,i,ω +x2,i,ω (ii) x2,i,ω ≥ x3,i,ω (iii)

Eω

[∑
i∈[n] x1,i,ω +x2,i,ω

]
≤ z

∑
i∈[n] ci (v)

Eω

[∑
i∈[n] x1,i,ω +x3,i,ω

]
≥ (β−σ+ z)

∑
i∈[n] ci (vi)

Eω

[∑
i∈[n] ciĝ

(
x1,i,ω

ci
,
x2,i,ω

ci
,
x3,i,ω

ci

)]
≤ e1/cz

∑
i∈[n] ci (viii)

Step (d): In this step, we transform (MPc) by replacing constraints (iii), (v), and (vi) with equalities

for Eω

[∑
i∈[n] x1,i,ω

]
, Eω

[∑
i∈[n] x2,i,ω

]
, and Eω

[∑
i∈[n] x3,i,ω

]
. We will show that such a transformation is

without loss of optimality, and we will refer to the resulting program as (MPd). To aid in this step, below

we compute the derivatives of ĝ(x1, x2, x3), as defined in (93).

∂ĝ

∂x1

= exp

(
x2

1−x1

− 1

)(
1− x2

1−x1

)
(94)

∂ĝ

∂x2

= −exp

(
x2

1−x1

− 1

)
+ exp (x2−x3− 1) (95)

∂ĝ

∂x3

= 1− exp (x2−x3− 1) (96)

Based on these derivatives, we can replace constraints (iii), (v), and (vi) with the following constraints:

Eω

∑
i∈[n]

x1,i,ω

 = max{0, β−σ+ z}
∑
i∈[n]

ci (ix)

Eω

∑
i∈[n]

x2,i,ω

 = (z−max{0, β−σ+ z})
∑
i∈[n]

ci (x)

Eω

∑
i∈[n]

x3,i,ω

 = 0 (xi)

To see why, first consider any feasible solution for (MPc), {~x, z}, such that x3,i,ω > 0 for some i,ω pair. We

construct a new solution {~x′, z′}, where x′1,i,ω = x1,i,ω +x3,i,ω, x
′
2,i,ω = x2,i,ω−x3,i,ω, x

′
3,i,ω = 0 and all other

variables remain the same, including z′ = z. Clearly, this solution has an equivalent objective value, and we

can show that such a solution remains feasible.
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For constraint (ii) and constraint (v), note that x′1,i,ω + x′2,i,ω = x1,i,ω + x2,i,ω. Similarly, for constraint

(iii), note that x′2,i,ω − x′3,i,ω = x2,i,ω − x3,i,ω, and for constraint (vi), we have x′1,i,ω + x′3,i,ω = x1,i,ω + x3,i,ω.

Finally, note that based on the derivatives calculated above, any increase in x1 and proportional decrease in

x2 and x3 must (weakly) decrease the left hand side of constraint (viii):

∂ĝ

∂x1

− ∂ĝ

∂x2

− ∂ĝ

∂x3

= exp

(
x2

1−x1

− 1

)(
2− x2

1−x1

)
− 1 (97)

= exp

(
x2

1−x1

− 1

)(
2− x2

1−x1

− exp

(
1− x2

1−x1

))
(98)

≤ exp

(
x2

1−x1

− 1

)(
2− x2

1−x1

− 2 +
x2

1−x1

)
(99)

≤ 0 (100)

Note that the second-to-last inequality uses the fact that ex ≥ 1 + x for any x. This proves that the con-

structed solution remains feasible, and thus it is without loss of optimality to impose the constraint that

Eω

[∑
i∈[n] x3,i,ω

]
= 0.

Using a similar approach that relies on the fact that ∂ĝ

∂x1
≥ 0, we can show that it is without loss of

generality to assume that either constraint (vi) binds or (if the right hand side of constraint (vi) is negative)

every x1,i,ω = 0. Otherwise, we can simply reduce any non-zero x1,i,ω and remain feasible. Coupled with the

constraint Eω

[∑
i∈[n] x3,i,ω

]
= 0, this establishes the equality for Eω

[∑
i∈[n] x1,i,ω

]
.

Again using a similar approach, this time relying on the fact that ∂ĝ

∂x2
≤ 0, we can show that it is without

loss of generality to assume that constraint (v) binds. Otherwise, we can simply increase any x2,i,ω where

constraint (ii) is loose (such an i,ω pair must exist if constraint (v) is loose). Coupled with the constraint

on Eω

[∑
i∈[n] x1,i,ω

]
, this establishes the equality for Eω

[∑
i∈[n] x2,i,ω

]
.

Therefore, we can impose the three equality constraints without loss of optimality, and we can then relax

the program by dropping constraints (iii), (v), and (vi). This transforms (MPc) into a new program (MPd)

(shown below), where the value of (MPd) is a lower bound on the value of (MPc). This completes step (d),

and for the next and final step, we will use (MPd) as the starting point.

Given an instance I, the inputs to (MPd) are the set of opportunities S, the EFET β, the MCPR σ,
and the set of feasible sample paths Ω, along with its associated probability measure.

(MPd) uses the set of variables ~x∈R3×n×|Ω|
≥0 and z ∈ [e−1/c(1− 1/e),1]

min
~x, z

z (MPd)

s.t. ∀i,ω, x2,i,ω ≥ x3,i,ω (iii)

Eω

[∑
i∈[n] ciĝ

(
x1,i,ω

ci
,
x2,i,ω

ci
,
x3,i,ω

ci

)]
≤ e1/cz

∑
i∈[n] ci (viii)

Eω

[∑
i∈[n] x1,i,ω

]
= max{0, β−σ+ z}∑

i∈[n] ci (ix)

Eω

[∑
i∈[n] x2,i,ω

]
= (z−max{0, β−σ+ z})∑

i∈[n] ci (x)

Eω

[∑
i∈[n] x3,i,ω

]
= 0 (xi)
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Step (e): In the final step, we relax (MPd) by replacing ĝ(x1, x2,0) := g(x1, x2) with its lower convex

envelope over the domain D = {(x1, x2) ∈ R2
≥0 : x1 + x2 ≤ 1}. We denote this lower convex envelope by

ğ(x1, x2). Any solution which satisfies constraint (viii) in (MPd) will continue to satisfy constraint (viii) after

this change, due to the lower convex envelope being a lower bound (by definition) on the original function g.

Furthermore, as the function ğ is convex, we can require constraints (ix), (x), and (xi) to hold pointwise

(i.e., for any i,ω pair) without loss of optimality. To see why, note that any feasible solution in (MPd) will

remain feasible when averaging over opportunities and sample paths such that
x1,i,ω

ci
is the same for all i,ω

pairs. (This averaging would not impact the value of the solution, z). Similarly, any feasible solution in

(MPd) will remain feasible when averaging over opportunities and sample paths such that
x2,i,ω

ci
is the same

for all i,ω pairs. Additionally, constraint (xi) ensures that x3,i,ω = 0 for all i,ω pairs, which eliminates the

need for constraint (iii).

Based on these observations, we can construct a new program, which we denote by (MPe), where x1,i,ω =

max{0, β−σ+ z}, x2,i,ω = z−max{0, β−σ+ z}, and x3,i,ω = 0 for all i,ω pairs. We then plug these values

into constraint (viii), the only remaining constraint, to arrive at (MPe) (shown below). As this transformation

was without loss of optimality, we note that (MPe) (shown below) represents a lower bound on (MPd).

Given an instance I, the inputs to (MPe) are the EFET β, the minimum capacity c,
and the MCPR σ.

(MPe) uses the variable z ∈ [e−1/c(1− 1/e),1]

min
z

z (MPe)

s.t. ğ (max{0, β−σ+ z}, z−max{0, β−σ+ z}) ≤ e1/cz (viii)

We note that the value of (MPe) is equivalent to z∗, as defined in (6) (see Theorem 2). Furthermore, by

steps (a) through (e) and the transitivity property, we have shown that the value of (MPe) represents a

lower bound on the value of (MP) for any instance I. We emphasize that this lower bound depends only

on the EFET β of the instance, the minimum capacity c of the instance, and the maximum heterogeneity

across a volunteer’s preferences σ of the instance. This completes the proof of Lemma 6. �

Appendix B: Omitted Proofs of Section 5

B.1. Proof of Proposition 4 (Section 5)

The proof of Proposition 4 follows an identical approach to the proof of Theorem 2. However, it does not

require the machinery of Step 3 in the proof of Lemma 2, as we do not intend to break the barrier of 1−1/e

except in trivial cases where the EFET exceeds 1−1/e. Up to that point (i.e., Step 3), this proof follows the

exact steps of the proof of Theorem 2. From that point, we complete the proof of Proposition 4 by placing a

further lower bound on the value of the AC-R algorithm that no longer depends on the amount of capacity

filled by external traffic (see Lemma 13).

To begin, we note that even in this ranking setting, if the EFET is β, then the AC-R algorithm will fill at

least a β fraction of capacity.



Manshadi et al.: Algorithms for Multi-Channel Traffic 63

Lemma 9 Let the smallest capacity be given by c. Then, for any effective fraction of external traffic β, the

competitive ratio of the AC-R algorithm is at least β.

Proof of Lemma 9: The proof of Lemma 9 is immediate and is identical to the proof of Lemma 1. We

simply note that the AC-R algorithm always recommends the targeted opportunity to external traffic. Apply-

ing the definition of the EFET (see Definition 2), this feature of the AC-R algorithm ensures that at least a

β fraction of capacity is filled in expectation. �

Next, we establish a lower bound of e−1/c(1− 1/e) on the competitive ratio of the AC-R algorithm, which

requires more intricate analysis.

Lemma 10 Let the smallest capacity be given by c. Then, for any effective fraction of external traffic β, the

competitive ratio of the AC-R algorithm is at least e−1/c(1− 1/e).

Proof of Lemma 10: Fixing an instance I, we aim to lower-bound the expected amount of capacity filled

under the AC-R algorithm, where the expectation is taken over sample paths. In the ranking setting, we extend

our definition of a sample path such that ω = {ω1, . . . ,ωT} represents the realizations of random variables

that govern volunteer sign-up decisions. More specifically, we define ωt as a vector of length |SR| (i.e., ωt

has one component for every possible ranked set of recommendations). The component of ωt corresponding

to the ranking ~S ∈ SR indicates the opportunity i∈ S ∪{0} that volunteer t signs up for, conditional on the

platform recommending the ranked subset ~S.55

For a fixed instance I and a fixed sample path ω, we use AC-R to denote the amount of capacity filled under

the AC-R algorithm.56 To provide a lower bound on Eω[AC-R], we leverage the LP-free approach developed in

Goyal and Udwani (2019) and Goyal et al. (2020), which involves the creation of path-based pseudo-rewards.

(For a more complete discussion of the intuition behind this approach, we kindly refer to the proof sketch of

Theorem 2 in Section 4.4.)

Before defining our pseudo-rewards in this setting, recall our convention that any algorithm (including

OPT and the AC-R algorithm) always recommends the targeted opportunity to external traffic. As before, to

ensure that we do not count sign-ups that exceed the capacity of an opportunity, we define ξ̃t(~S
AC-R
t ) as the

opportunity that volunteer t fills capacity of under AC-R.

Furthermore, recall that for a fixed instance I and along a fixed sample path ω, we denote by V0 the

subset of internal traffic for which OPT recommends the dummy ranking {0}; i.e., OPT does not recommend

any opportunity. (Recall that OPT knows a priori how much capacity will be filled by external traffic as it

knows the realizations of those volunteers’ sign-up decisions. This capacity is effectively reserved for external

traffic, and internal traffic will be used only if it can fill the remaining capacity. See Definition 1 and its

following discussion.)

55 Fixing a sample path ω, the output of OPT and AC-R are deterministic.

56 Even though AC-R depends on the instance and the sample path, we hereafter suppress this dependence to ease
exposition (for AC-R as well as for all other quantities that depend on the instance and the sample path).
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For the fixed instance I and the fixed sample path ω, we define the pseudo-rewards LRt for all t∈ [T ] and

KRi for all i∈ [n] according to the following:

LRt (ω) =

{∑
i∈[n]ψ(FRi,t−1)1[ξ̃t(~S

AC-R
t ) = i], t∈ Vext ∪V0∑

i∈[n]ψ(FRi,t−1)1[ξt(~S
OPT
t ) = i], t∈ V int \ V0

(101)

KRi (ω) =
∑
t∈[T ]

(1−ψ(FRi,t−1))1[ξ̃t(~S
AC-R
t ) = i] (102)

We now prove that the expected sum of these pseudo-rewards serves as a lower bound on the expected value

of AC-R.

Lemma 11 For any instance I,

Eω

[
AC-R

]
≥ Eω

∑
t∈[T ]

LRt +
∑
i∈[n]

KRi

 , (103)

where LRt and KRi are defined in (101) and (102), respectively.

Proof of Lemma 11: The proof follows from the definition of LRt and KRi , as well as the design of the

AC-R algorithm:

Eω[AC-R] = Eω

 ∑
t∈V int\V0

∑
i∈[n]

1[ξ̃t(~S
AC-R
t ) = i] +

∑
t∈Vext∪V0

∑
i∈[n]

1[ξ̃t(~S
AC-R
t ) = i]

 (104)

=Eω

∑
i∈[n]

 ∑
t∈V int\V0

ψ(FRi,t−1)1[ξ̃t(~S
AC-R
t ) = i] +

∑
t∈V int\V0

(1−ψ(FRi,t−1))1[ξ̃t(~S
AC-R
t ) = i]

+
∑

t∈Vext∪V0

ψ(FRi,t−1)1[ξ̃t(~S
AC-R
t ) = i] +

∑
t∈Vext∪V0

(1−ψ(FRi,t−1))1[ξ̃t(~S
AC-R
t ) = i]

)]
(105)

=Eω

∑
i∈[n]

∑
t∈V int\V0

ψ(FRi,t−1)1[ξ̃t(~S
AC-R
t ) = i]

+Eω

 ∑
t∈Vext∪V0

LRt +
∑
i∈[n]

KRi

 (106)

=Eω

∑
i∈[n]

∑
t∈V int\V0

ψ(FRi,t−1)1[ξt(~S
AC-R
t ) = i]

+Eω

 ∑
t∈Vext∪V0

LRt +
∑
i∈[n]

KRi

 (107)

≥Eω

∑
i∈[n]

∑
t∈V int\V0

ψ(FRi,t−1)1[ξt(~S
OPT
t ) = i]

+Eω

 ∑
t∈Vext∪V0

LRt +
∑
i∈[n]

KRi

 (108)

=Eω

∑
t∈[T ]

LRt +
∑
i∈[n]

KRi

 (109)

All steps are algebraic except for (107) and Line (108). To establish the former, we will show that∑
i∈[n]ψ(FRi,t−1)1[ξt(~S

AC-R
t ) = i] =

∑
i∈[n]ψ(FRi,t−1)1[ξ̃t(~S

AC-R
t ) = i] for t ∈ V int ∪V0. We consider two cases.

First, if FRξt(~SAC-R
t ),t−1 < 1, then ξt(~S

AC-R
t ) = ξ̃t(~S

AC-R
t ) and the equality holds. Alternatively, if FRξt(~SAC-R

t ),t−1 =

1, then ξ̃t(~S
AC-R
t ) = 0 and ψ(FRξt(~SAC-R

t ),t−1) = 0. Thus, both summations equal 0, and the equality holds.

Inequality (108) follows from the AC-R algorithm’s optimality condition (see Equation 12), which ensures

that it recommends the ranking that maximizes the weighted probability of generating a sign-up (where the

weight for opportunity i at time t is given by ψ(FRi,t−1)). Since the recommendation provided by OPT to any
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volunteer must be independent of their sign-up realization, the inequality holds.57 Applying the definition

of the pseudo-rewards LRt for t∈ V int \ V0 completes the proof of Lemma 11. �

Next, we place a lower bound on the expected sum of the pseudo-rewards, which depends on the amount

of capacity filled under OPT along a fixed sample path. As part of this lower bound, we define AC-Rinti,t (as

well as AC-Rexti,t and OPTinti,t ) in exactly the same way as its counterpart in our base model, i.e., as the amount

of opportunity i’s capacity filled at time t by internal traffic under AC-R.

Lemma 12 For any instance I,

Eω

∑
t∈[T ]

LRt +
∑
i∈[n]

KRi

 ≥ e−1/c
Eω

∑
i∈[n]

AC-Rexti,T + AC-R0
i,T + OPTinti,T ·ψ

(
AC-Rinti,T

ci− AC-Rexti,T

)

+ci

(
1−ψ

(
AC-Rinti,T − AC-R0

i,T

ci

)
− 1/e

)]
, (110)

where LRt and KRi are defined in (101) and (102), respectively.

Proof of Lemma 12: We proceed by separately deriving lower bounds on the LRt pseudo-rewards and the

KRi pseudo-rewards. For the former,∑
t∈[T ]

LRt =
∑

t∈Vext∪V0

LRt +
∑

t∈V int\V0

LRt (111)

=
∑

t∈Vext∪V0

LRt +
∑

t∈V int\V0

∑
i∈[n]

ψ(FRi,t−1)1[ξt(~S
OPT
t ) = i] (112)

≥
∑

t∈Vext∪V0

LRt +
∑

t∈V int\V0

∑
i∈[n]

ψ(FRi,T )1[ξt(~S
OPT
t ) = i] (113)

=
∑

t∈Vext∪V0

LRt +
∑
i∈[n]

ψ

(
AC-Rinti,T

ci− AC-Rexti,T

)
OPTinti,T (114)

Equality in (112) follows from the definition of LRt . Inequality in (113) holds because ψ is a decreasing

function in its argument and FRi,T ≥ FRi,t−1 for all t ∈ [T ]. Equality in (114) comes from applying the

definition of the fill rate as well as the fact that
∑

t∈V int\V0 1[ξt(~S
OPT
t ) = i] = OPTinti,T .

We next turn our attention to the KRi pseudo-rewards, which we further separate into two summations:∑
i∈[n]

KRi =
∑
i∈[n]

∑
t∈Vext∪V0

(1−ψ(FRi,t−1))1[ξ̃t(~S
AC-R
t ) = i] +

∑
i∈[n]

∑
t∈V int\V0

(1−ψ(FRi,t−1))1[ξ̃t(~S
AC-R
t ) = i]

(115)

We note that the first summation has a nice relationship with the first term in (114). To see this, let us

define AC-R0
i,T =

∑
t∈V0 1[ξ̃t(~S

AC-R
t ) = i] as the sum of sign-ups under AC-R by volunteers who did not receive

a ranking under OPT. Then,∑
i∈[n]

∑
t∈Vext∪V0

(1−ψ(FRi,t−1))1[ξ̃t(~S
AC-R
t ) = i] =

∑
i∈[n]

( ∑
t∈Vext∪V0

1[ξ̃t(~S
AC-R
t ) = i]−ψ(FRi,t−1)1[ξ̃t(~S

AC-R
t ) = i]

)
(116)

=
∑
i∈[n]

AC-Rexti,T + AC-R0
i,T −

∑
t∈Vext∪V0

LRt (117)

57 We emphasize that, similar to our base model, OPT has knowledge of the arrival sequence and the realized decisions
of external traffic, but not the realized decisions of internal traffic.
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Now focusing on the second summation, which deals with internal traffic for which OPT provides a ranking:∑
i∈[n]

∑
t∈V int\V0

(1−ψ(FRi,t−1))1[ξ̃t(~S
AC-R
t ) = i] ≥

∑
i∈[n]

∑
t∈V int\V0

(
1−ψ

(
AC-Rinti,t−1

ci

))
1[ξ̃t(~S

AC-R
t ) = i] (118)

≥
∑
i∈[n]

∑
k∈[AC-Rint

i,T
−AC-R0

i,T
]

(
1−ψ

(
k− 1

ci

))
(119)

≥
∑
i∈[n]

e−1/ci
∑

k∈[AC-Rint
i,T
−AC-R0

i,T
]

(
1−ψ

(
k

ci

))
(120)

≥ e−1/c
∑
i∈[n]

∫ AC-Rinti,T−AC-R
0
i,T

0

1−ψ(x/ci) ∂x (121)

= e−1/c
∑
i∈[n]

ci

(
1−ψ

(
AC-Rinti,T − AC-R0

i,T

ci

)
− 1/e

)
(122)

In (118), we use the fact that ψ is decreasing and
AC-Rinti,t−1

ci
≤ AC-Rinti,t−1

ci−AC-Rexti,t−1
= FRi,t−1. We then further reduce

the argument in ψ in (119) by noting that the lowest possible values of AC-Rinti,t are {1, . . . ,AC-Rinti,T −AC-R0
i,T},

since AC-Rinti,t increases by 1 for any t∈ V int where ξ̃t(~S
AC-R
t ) = i.

The summation in (119) represents a left Reimann sum of an increasing function. In (120), we utilize the

fact that for any k, 1−ψ((k−1)/ci)≥ e1/c(1−ψ(k/ci)). As the summation in (120) is now a right Reimann

sum of an increasing function, we bound the sum with an appropriate integral in (121). We evaluate the

integral to arrive at (122).

Combining (114), (117), and (122) along with the observation that e−1/c < 1, we see that for any sample

path ω, ∑
t∈[T ]

LRt +
∑
i∈[n]

KRi ≥ e−1/c
∑
i∈[n]

(
AC-Rexti,T + AC-R0

i,T + OPTinti,T ·ψ
(

AC-Rinti,T

ci− AC-Rexti,T

)

+ci

(
1−ψ

(
AC-Rinti,T − AC-R0

i,T

ci

)
− 1/e

))
Taking expectations over all sample paths completes the proof of Lemma 12. �

We now depart from the steps of Theorem 2 and derive a lower bound on the right hand side of (110)

(and thus a lower bound on the sum of the pseudo-rewards) that no longer depends on AC-Rexti,T and AC-R0
i,t.

Lemma 13 For any instance I, any sample path ω, and any opportunity i,

AC-Rexti,T + AC-R0
i,T + OPTinti,T ·ψ

(
AC-Rinti,T

ci− AC-Rexti,T

)
+ ci

(
1−ψ

(
AC-Rinti,T − AC-R0

i,T

ci

)
− 1/e

)
≥ (1− 1/e)OPTi,T ,

(123)

where OPTi,T = OPTexti,T + OPTinti,T .

Proof of Lemma 13: We first note that the left hand side (LHS) of (123) is increasing in AC-R0
i,T .

∂ LHS

∂ AC-R0
i,T

= 1 +ψ′
(
AC-Rinti,T − AC-R0

i,T

ci

)
(124)

= 1− exp

(
AC-Rinti,T − AC-R0

i,T

ci
− 1

)
(125)

≥ 0 (126)
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The final inequality comes from noting that AC-Rinti,T − AC-R0
i,T cannot exceed the capacity ci. Therefore, we

can lower-bound the LHS by plugging in AC-R0
i,T = 0 to yield

LHS ≥ AC-Rexti,T + OPTinti,T ·ψ
(

AC-Rinti,T

ci− AC-Rexti,T

)
+ ci

(
1−ψ

(
AC-Rinti,T

ci

)
− 1/e

)
(127)

There are now two cases to consider: (i) either AC-R uses the same amount of external traffic as OPT for

opportunity i, or (ii) opportunity i reaches capacity under AC-R.58

In Case (i), we have

LHS≥ OPTexti,T + OPTinti,T ·ψ
(

AC-Rinti,T

ci− OPTexti,T

)
+ ci

(
1−ψ

(
AC-Rinti,T

ci

)
− 1/e

)
(128)

≥ OPTexti,T + OPTinti,T ·ψ
(

AC-Rinti,T

ci− OPTexti,T

)
+ OPTi,T

(
1−ψ

(
AC-Rinti,T

ci

)
− 1/e

)
(129)

= OPTexti,T + OPTinti,T ·ψ
(

AC-Rinti,T

ci− OPTexti,T

)
− (OPTexti,T + OPTinti,T ) ·ψ

(
AC-Rinti,T

ci

)
+ OPTi,T (1− 1/e) (130)

= (OPTexti,T + OPTinti,T ) · exp

(
AC-Rinti,T

ci
− 1

)
− OPTinti,T · exp

(
AC-Rinti,T

ci− OPTexti,T

− 1

)
+ OPTi,T (1− 1/e) (131)

= exp

(
AC-Rinti,T

ci− OPTexti,T

− 1

)(
(OPTexti,T + OPTinti,T ) · exp

(−AC-Rinti,T · OPTexti,T

ci(ci− OPTexti,T )

)
− OPTinti,T

)
+ OPTi,T (1− 1/e)

(132)

≥ exp

(
AC-Rinti,T

ci− OPTexti,T

− 1

)(
(OPTexti,T + OPTinti,T )

(
1− AC-Rinti,T · OPTexti,T

ci(ci− OPTexti,T )

)
− OPTinti,T

)
+ OPTi,T (1− 1/e) (133)

= exp

(
AC-Rinti,T

ci− OPTexti,T

− 1

)(
OPTexti,T − (OPTexti,T + OPTinti,T )

(
AC-Rinti,T · OPTexti,T

ci(ci− OPTexti,T )

))
+ OPTi,T (1− 1/e) (134)

≥ exp

(
AC-Rinti,T

ci− OPTexti,T

− 1

)
OPTexti,T

(
1− AC-Rinti,T

ci− OPTexti,T

)
+ OPTi,T (1− 1/e) (135)

≥ OPTi,T (1− 1/e) (136)

Equality in (131) comes from applying the definition of the function ψ. Inequality (135) comes from noting

that OPTexti,T +OPTinti,T ≤ ci and (136) comes from noting that in Case (i), where the amount of opportunity i’s

capacity filled by external traffic is the same under AC-R and OPT, AC-Rinti,T +OPTexti,T = AC-Rinti,T +AC-Rexti,T ≤ ci.
This implies that 1− AC-Rinti,T

ci−OPTexti,T
≥ 0.

In Case (ii), where opportunity i reaches capacity under AC-R, we have

LHS ≥ AC-Rexti,T + OPTinti,T ·ψ
(
ci− AC-Rexti,T

ci− AC-Rexti,T

)
+ ci

(
1−ψ

(
ci− AC-Rexti,T

ci

)
− 1/e

)
(137)

= AC-Rexti,T + ci

(
1−ψ

(
ci− AC-Rexti,T

ci

)
− 1/e

)
(138)

= AC-Rexti,T − ci ·ψ
(

1− AC-Rexti,T

ci

)
+ ci (1− 1/e) (139)

≥ ci (1− 1/e) (140)

≥ OPTi (1− 1/e) (141)

58 Based on Definition 1, OPT will never use internal traffic to fill capacity that would otherwise be filled by external
traffic. As a consequence, OPT uses all external traffic for i (or fills opportunity i with external traffic) along each
sample path. By our convention for external traffic, AC will always recommend the volunteer’s targeted opportunity
i∗t . However, if this opportunity has already reached capacity, the sign-up does not fill any capacity.
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To establish (140), we note that the expression in (139) is non-decreasing in AC-Rexti,T , as its derivative is given

by 1− exp(−AC-Rexti,T /ci)≥ 0. Plugging in the smallest possible value for AC-Rexti,T (which is 0) yields (140).

This establishes (123) and completes the proof of Lemma 13. �

By sequentially applying Lemmas 11, 12, and 13, we see that we can bound the expected amount of

capacity filled under AC-R via the following inequalities:

Eω

[
AC-R] ≥ Eω

∑
t∈[T ]

LRt +
∑
i∈[n]

KRi

 (142)

≥ e−1/c
Eω

∑
i∈[n]

AC-Rexti,T + AC-R0
i,T + OPTinti,T ·ψ

(
AC-Rinti,T

ci− AC-Rexti,T

)

+ci

(
1−ψ

(
AC-Rinti,T − AC-R0

i,T

ci

)
− 1/e

)]
(143)

≥ e−1/c
Eω

∑
i∈[n]

(1− 1/e)OPTi

 (144)

= e−1/c(1− 1/e)Eω [OPT] (145)

This establishes a lower bound of e−1/c(1− 1/e) on the competitive ratio of AC-R, thereby completing the

proof of Lemma 10. �

Together with Lemma 9, this completes the proof of Proposition 4. �

B.2. Proof of Proposition 5 (Section 5)

To prove Proposition 5, we use the approach of the proof of Theorem 2. In the following, we go through the

main steps of that proof (as described in Section 4.4), and we provide detailed discussion of any adjustments

needed to show that the result of Theorem 2 extends to this setting, which we henceforth refer to as the

cascade setting. We emphasize that the cascade setting is a special case of the ranking setting where we can

tailor our analysis to improve the bound (which, for the ranking setting, is given by Proposition 4).

To begin, we note that in the cascade setting, if the EFET is β, then the AC-R algorithm will fill at least

a β fraction of capacity, as established in Lemma 9. We next prove the following additional lower bound on

the competitive ratio of the AC-R algorithm in the cascade setting.

Lemma 14 Let the smallest capacity be given by c and let the MCPR (given in Definition 4) be at most

σ. Then, for any effective fraction of external traffic β, the competitive ratio of the AC-R algorithm in the

cascade setting is at least z∗ (as defined in (6)).

This lemma is the analog (in the cascade setting) of Lemma 2, and to prove this result we follow the same

three steps in the proof of Lemma 2, extended to this setting.

Step 1: Defining Pseudo-Rewards in the Cascade Setting

In the cascade setting, our notion of pseudo-rewards remains dependent on both the instance and the

sample path. We extend our definition of a sample path such that ω = {ωv1 ,ωs1 . . . , ωvT ,ωsT} represents the

realizations of random variables that govern both volunteer choices: the choice of which opportunity to view
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and the choice of which opportunity to sign up for, conditional on viewing. As volunteers’ view decisions

in this cascade setting are agnostic to the opportunity in each ranked position, we define ωvt as an integer

between 1 and K+ 1, such that volunteer t views the opportunity that is ranked in position ωvt . We remind

that the ranked subsets are of length at most K; hence, we use ωvt =K + 1 to indicate that the volunteer

exits the platform (at any position) without viewing an opportunity. In general, a volunteer makes two

random decisions for each considered position: whether to view and whether to exit if not viewing. However,

ωvt ∈ [K + 1] is sufficient information to fully specify the outcome of AC-R and OPT.

As in the base setting, we define ωst as a binary vector of length n, where the ith component of ωst indicates

whether volunteer t signs up for opportunity i, conditional on viewing opportunity i. We remark that, like

all previous settings, given any fixed instance I and any fixed sample path ω, the output of AC-R and OPT are

deterministic. We also remark that having ωvt ≤K is not a sufficient condition to ensure that the volunteer

views an opportunity in that position, as it could be the case that the ranking presented to the volunteer

was shorter than ωvt . In that case, again the volunteer does not view (or sign up for) any opportunity.

We further define the set VC as the set of internal traffic t∈ V int for which t does not view an opportunity

under OPT, along the given sample path ω. This expands on our definition of V0 in the base setting: as before,

t is in VC if OPT does not recommend any opportunities. Now, we additionally have t in VC if the volunteer

would view the opportunity ranked in position k (i.e., ωvt = k) but OPT provides a ranking of length less than

k. For instance, based on our assumption that the ranking provided is at most length K, volunteer t will be

in VC if ωvt =K + 1. (We emphasize that the realization of ωvt is independent from the ranking provided by

OPT for volunteer t.)

With this in mind, for the fixed instance I and the fixed sample path ω, we define the pseudo-rewards LCt

for all t∈ [T ] and KCi for all i∈ [n] according to the following:

LCt =

{∑
i∈[n]ψ(FRi,t−1)1[ξ̃t(~S

AC-R
t ) = i], t∈ Vext ∪VC∑

i∈[n]ψ(FRi,t−1)1[ξt(~S
OPT
t ) = i], t∈ V int \ VC (146)

KCi =
∑
t∈[T ]

(1−ψ(FRi,t−1))1[ξ̃t(~S
AC-R
t ) = i] (147)

Step 2: Bounding the Value of AC-R in the Cascade Setting

This step of the proof involves two lemmas, which together establish a lower bound on the expected value

of AC-R that depends (in part) on the expected value of OPT.

Lemma 15 In the cascade setting, for any instance I,

Eω

[
AC-R

]
≥ Eω

∑
t∈[T ]

LCt +
∑
i∈[n]

KCi

 , (148)

where LCt and KCi are defined in (146) and (147), respectively.

Proof of Lemma 15: This lemma is the analog (in the cascade setting) of Lemma 3 (proven in Appendix

A.6.1). We follow the same algebraic steps, replicated below. As we later elaborate on, one particular inequal-

ity requires additional justification in the cascade setting.
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Eω[AC-R] = Eω

 ∑
t∈V int\VC

∑
i∈[n]

1

[
ξ̃t(~S

AC-R
t ) = i

]
+

∑
t∈Vext∪VC

∑
i∈[n]

1

[
ξ̃t(~S

AC-R
t ) = i|

] (149)

=Eω

∑
i∈[n]

 ∑
t∈V int\VC

ψ(FRi,t−1)1
[
ξ̃t(~S

AC-R
t ) = i

]
+

∑
t∈V int\VC

(1−ψ(FRi,t−1))1
[
ξ̃t(~S

AC-R
t ) = i

]

+
∑

t∈Vext∪VC

ψ(FRi,t−1)1
[
ξ̃t(~S

AC-R
t ) = i

]
+

∑
t∈Vext∪VC

(1−ψ(FRi,t−1))1
[
ξ̃t(~S

AC-R
t ) = i

])]
(150)

=Eω

∑
i∈[n]

∑
t∈V int\VC

ψ(FRi,t−1)1
[
ξ̃t(~S

AC-R
t ) = i

]+Eω

 ∑
t∈Vext∪VC

LCt +
∑
i∈[n]

KCi

 (151)

=Eω

∑
i∈[n]

∑
t∈V int\VC

ψ(FRi,t−1)1
[
ξt(~S

AC-R
t ) = i

]+Eω

 ∑
t∈Vext∪VC

LCt +
∑
i∈[n]

KCi

 (152)

≥Eω

∑
i∈[n]

∑
t∈V int\VC

ψ(FRi,t−1)1
[
ξt(~S

OPT
t ) = i

]+Eω

 ∑
t∈Vext∪VC

LCt +
∑
i∈[n]

KCi

 (153)

=Eω

∑
t∈[T ]

LCt +
∑
i∈[n]

KCi

 (154)

All steps are algebraic except for (152) and Line (153). To establish the former, we will show that∑
i∈[n]ψ(FRi,t−1)1[ξt(~S

AC-R
t ) = i] =

∑
i∈[n]ψ(FRi,t−1)1[ξ̃t(~S

AC-R
t ) = i]. We consider two cases. First, if

FRξt(~SAC-R
t ),t−1 < 1, then ξt(~S

AC-R
t ) = ξ̃t(~S

AC-R
t ) and the equality holds. Alternatively, if FRξt(~SAC-R

t ),t−1 = 1, then

ξ̃t(~S
AC-R
t ) = 0 and ψ(FRξt(~SAC-R

t ),t−1) = 0. Thus, both summations equal 0, and the equality holds.

Establishing (153) in the cascade setting requires more care, as the set V int \ VC only includes volunteers

that viewed an opportunity under OPT, and whether or not a volunteer views an opportunity under OPT

depends on the ranking provided by OPT. To that end, it is sufficient to show the following inequality holds

for all t ∈ V int, where we define ω−t as a sample path excluding the realizations governing the decisions of

volunteer t (i.e., ωvt and ωst ).

Eωv
t ,ω

s
t

[∑
i∈[n]

ψ(FRi,t−1)1
[
ξt(~S

AC-R
t ) = i

]
1

[
t /∈ VC

] ∣∣ ω−t]

≥Eωv
t ,ω

s
t

∑
i∈[n]

ψ(FRi,t−1)1
[
ξt(~S

OPT
t ) = i

]
1

[
t /∈ VC

] ∣∣ ω−t
 (155)

Applying the tower property of expectations would then establish the validity of (153).

To show that (155) holds, we first take advantage of the fact that, in the cascade setting, the probability

of viewing an opportunity under any algorithm (including OPT) depends only on the length of the ranking

provided by that algorithm, and not on the identity and ordering of the opportunities in the ranking.

To be precise, we make the following claim:

Claim 7 In the cascade setting, for a fixed instance I and a fixed sample path ω, for any volunteer t∈ V int

there is a position k∗t (ω−t) such that t∈ V int \ VC if and only if ωvt ≤ k∗t (ω−t).
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Proof of Claim 7: Recall our convention that OPT recommends the optimal ranking which is of shortest

length (breaking ties in favor of the lexicographically smallest such subset with respect to its indices). This

convention – in combination with the fact that the probability of a volunteer viewing an opportunity is

decreasing in the opportunity’s rank in the cascade setting – ensures an important property of OPT: if OPT

ranks a (non-dummy) opportunity in position k, it will also rank (non-dummy) opportunities in positions 1

through k− 1. To see why, suppose that this is not the case. Moving the last-ranked opportunity up to an

open position (i.e., a position occupied by a dummy opportunity) shortens the ranking, and doing so weakly

increases the amount of filled capacity under OPT. Thus, OPT should have recommended this ranking, which

establishes a contradiction.

As a consequence, let k∗t denote the length of the ranking provided to volunteer t ∈ V int by OPT along

sample path ω. If t views an opportunity under OPT, then ωvt ≤ k∗t . The converse also holds.

We remark that the length of this ranking (i.e., k∗t ) depends only on the number of opportunities with

remaining capacity for internal traffic at time t−1 (for which volunteer t has positive conversion probability).

This set of opportunities is not a function of the realizations ωvt and ωst . �

In light of Claim 7, we can rewrite (155) as follows, using PC to denote the probability distribution

associated with the realizations ωvt , which depends only on the parameters of the opportunity-agnostic

cascade model. Furthermore, we use ~SAC-R
t (k) (resp., ~SOPT

t (k)) to denote the opportunity ranked in position k

under AC-R (resp. OPT).

Eωv
t ,ω

s
t

[∑
i∈[n]

ψ(FRi,t−1)1
[
ξt(~S

AC-R
t ) = i

]
1

[
ωvt ≤ k∗t (ω−t)

] ∣∣ ω−t]
=

∑
k∈[k∗t (ω−t)]

PC
[
ωvt = k

∣∣ ωvt ≤ k∗t (ω−t)]PC[ωvt ≤ k∗t (ω−t)]µ~SAC-R
t (k),tψ(FR~SAC-R

t (k),t−1) (156)

=
∑

k∈[k∗t (ω−t)]

PC
[
ωvt = k

]
µ~SAC-R

t (k),tψ(FR~SAC-R
t (k),t−1) (157)

≥
∑

k∈[k∗t (ω−t)]

PC
[
ωvt = k

]
µ~SOPT

t (k),tψ(FR~SOPT
t (k),t−1) (158)

=
∑

k∈[k∗t (ω−t)]

PC
[
ωvt = k

∣∣ ωvt ≤ k∗t (ω−t)]PC[ωvt ≤ k∗t (ω−t)]µ~SOPT
t (k),tψ(FR~SOPT

t (k),t−1) (159)

= Eωv
t ,ω

s
t

∑
i∈[n]

ψ(FRi,t−1)1
[
ξt(~S

OPT
t ) = i

]
1

[
ωvt ≤ k∗t (ω−t)

] ∣∣ ω−t
 (160)

We note that equality in (157) and (159) follow from the rules of conditional probability, as for any k ≤
k∗t (ω−t), we have PC

[
ωvt = k

∣∣ ωvt ≤ k∗t (ω−t)]=
PC [ωv

t =k]

PC [ωv
t≤k

∗
t (ω−t)]

. All that remains is to prove that (158) holds,

which we do via the following claim:

Claim 8 Let ~SAC-R
t be the ranking presented by AC-R to volunteer t ∈ V int, as given by (12). Then, in the

cascade setting, ~SAC-R
t also satisfies the following condition for any k′ ≤K:

~SAC-R
t ∈ argmax~S

∑
k∈[k′]

PC
[
ωvt = k

]
µ~S(k),tψ(FR~S(k),t−1).
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Proof of Claim 8 Applying the optimality condition of the AC-R algorithm (see (12)) to the cascade

setting, we see that

~SAC-R
t ∈ argmax~S

∑
k∈[K]

PC
[
ωvt = k

]
µ~S(k),tψ(FR~S(k),t−1).

To prove Claim 8, we need to show that that AC-R continues to satisfy this optimality condition when

considering the sum over the first k′ terms, for any k′ ≤ K. In the cascade setting, the view probability

depends only on an opportunity’s position, and P [ωvt = k] = νt
(
(1−νt)(1−qt)

)k−1
is decreasing in the position

k. Therefore, the AC-R algorithm will rank opportunities in descending order of µi,tψ(FRi,t−1) (breaking

ties in favor of the lowest-indexed opportunity), until it exhausts the maximum list size K. To see why,

suppose µi,tψ(FRi,t−1) > µj,tψ(FRj,t−1), but opportunity i is ranked after opportunity j in ~SAC-R
t . In that

case, switching opportunity i and opportunity j in ~SAC-R
t would strictly increase the objective that AC-R is

optimizing for, which represents a contradiction.

By an identical argument, ranking opportunities in descending order of µi,tψ(FRi,t−1) also maximizes∑
k∈[k′]

PC
[
ωvt = k

]
µ~S(k),tψ(FR~S(k),t−1).

Therefore, AC-R also satisfies this optimality condition for any k′, which completes the proof of Claim 8. �

Together, Claims 7 and 8 prove that (153) holds. This completes the proof of Lemma 15. �

Lemma 16 In the cascade setting, for any instance I,

Eω

∑
t∈[T ]

LCt +
∑
i∈[n]

KCi

 ≥ e−1/c
Eω

∑
i∈[n]

AC-Rexti,T + AC-RCi,T + OPTinti,T ·ψ
(

AC-Rinti,T

ci− AC-Rexti,T

)

+ci

(
1−ψ

(
AC-Rinti,T − AC-RCi,T

ci

)
− 1/e

)]
, (161)

where LCt and KCi are defined in (146) and (147), respectively.

Lemma 16 is the analog (in the cascade setting) of Lemma 12. The proof of this lemma immediately follows

by taking identical steps as in the proof of Lemma 12. (As the proof is algebraic and holds along each sample

path, the distinction between V0 and VC does not impact the result.) We omit these details for the sake of

brevity.

Step 3: Bounding the Competitive Ratio of AC-R in the Cascade Setting

The final step of the proof involves the use of the instance-specific mathematical program (MP) (see Table

1), which helps establish a lower bound on the competitive ratio of AC-R in the cascade setting.

Lemma 17 In the cascade setting, for any instance I, the ratio between the expected value of AC-R (i.e.,

Eω[AC-R]) and the expected value of OPT (i.e., Eω[OPT]) on instance I is at least the value of (MP).

Proof of Lemma 17: Lemma 17 is the analog (in the cascade setting) of Lemma 5, and our proof follows

a similar approach. To prove Lemma 17, we consider the following candidate solution:
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x1,i,ω = AC-Rexti,T , x2,i,ω = AC-Rinti,T , x3,i,ω = AC-RCi,T ,

y1,i,ω = OPTexti,T , y2,i,ω = OPTinti,T , z =
Eω[AC-R]

Eω[OPT]

Such a solution has an objective value equal to the ratio Eω[AC-R]/Eω[OPT] in (MP), and by construction

it satisfies all constraints. The first five constraints hold by exactly the same rationale described in the proof

of Lemma 5 (see Appendix A.6.3).

To see that the sixth constraint is satisfied, let us fix a sample path ω and an opportunity i. The total

amount of opportunity i’s capacity filled by AC-R in periods t∈ V int \VC is given by x2,i,ω−x3,i,ω, while the

total amount of opportunity i’s capacity filled by OPT in periods t∈ V int \VC is given by y2,i,ω. Furthermore,

for all t∈ V int \VC, volunteer t views an opportunity under OPT, which means it fills a unit of capacity with

probability at least µ
t
. For the same volunteer t, AC-R will fill a unit of capacity with probability at most

µ̄t. As a consequence, x2,i,ω −x3,i,ω ≤ σy2,i,ω, or equivalently, x2,i,ω ≤ σy2,i,ω +x3,i,ω.

Based on the constructed values of ~x,~y, and z, as well as the upper bound on x2,i,ω identified above,

Eω

∑
i∈[n]

x1,i,ω

= z ·Eω

∑
i∈[n]

y1,i,ω + y2,i,ω

−Eω

∑
i∈[n]

x2,i,ω

 (162)

≥ z ·Eω

∑
i∈[n]

y1,i,ω + y2,i,ω

−Eω

∑
i∈[n]

σ · y2,i,ω +x3,i,ω

 (163)

=Eω

∑
i∈[n]

y1,i,ω

−Eω

∑
i∈[n]

(1− z) · y1,i,ω + (σ− z) · y2,i,ω

−Eω

∑
i∈[n]

x3,i,ω

 (164)

≥Eω

∑
i∈[n]

y1,i,ω

− (σ− z) ·Eω

∑
i∈[n]

y1,i,ω + y2,i,ω

−Eω

∑
i∈[n]

x3,i,ω

 (165)

≥ β
∑
i∈[n]

ci− (σ− z)
∑
i∈[n]

ci−Eω

∑
i∈[n]

x3,i,ω

 . (166)

Inequality (165) uses the fact that σ≥ 1. The final inequality uses the fact that Eω

[∑
i∈[n] y1,i,ω

]
= β

∑
i∈[n] ci

based on the definitions of the optimal clairvoyant algorithm OPT and the EFET β (see Definitions 1 and 2).

This final inequality establishes that our candidate solution respects constraint (vi).

The fact that the candidate solution satisfies the seventh (and final constraint) follows by applying Lemmas

15 and 16 from Step 2. This completes the proof of Lemma 17. �

As established in Lemma 6 (proven in Appendix A.6.4), the optimal value of (MP) is at least z∗ (as defined

in (6)). Therefore, we have shown a lower bound on the ratio Eω[AC-R]/Eω[OPT] in the cascade setting for any

instance I ∈ Iβ, where the bound depends on only the EFET β, the minimum capacity c, and the MCPR σ.

Taken as a whole, these three steps prove Lemma 14, namely, that z∗ is a lower bound on the competitive

ratio of the AC-R algorithm in the cascade setting. Thus, in combination with our observation that the

competitive ratio is lower-bounded by β, we have shown that the competitive ratio of the AC-R algorithm is

at least f(β, c, σ), as defined in the statement of Theorem 2. �
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Appendix C: Additional Details on Case Study

C.1. Data Availability

Through our partnership with VolunteerMatch, we have access to the following sources of detailed data on

their platform:

1. Volunteer Match’s back-end database that provides opportunity-level data on characteristics such as

their posting dates, locations (in-person or virtual), timings (specific dates/times or a flexible schedule),

capacities (i.e., the number of volunteers needed), and the cause(s) the organization supports (out of a

list of thirty including LGBTQ, seniors, hunger, etc.). To ensure consistent data quality and accuracy,

we limit our analysis to virtual opportunities active between August 2020- March 2021 for which we

have precise data on capacity (i.e., those that request a number of volunteers between 1 and 20). We

focus on virtual opportunities, as these opportunities do not have compatibility that depends on the

proximity of a volunteer to an opportunity.

2. Google Analytics (GA) data that details user behavior on the site. GA provides session-level information

for all devices accessing the website, allowing us to understand the different ways users access the site,

whether this source of access affects search behavior, and whether different kinds of opportunities are

more likely to be viewed or more likely to be signed-up for, conditional on being viewed. We have access

to data for activity between August 2020- March 2021 for devices from New York City, Miami, Austin,

Alaska, Maine, Montana, Vermont, and West Virginia. Opportunities appearing in our GA dataset are

those that were viewed at least once by one or more of these devices.

For the window between August 2020-March 2021, we combine these datasets, which allows us to directly

determine the arrival order of internal and external traffic, and to estimate opportunity-level conversion

probabilities conditional on a view.

C.2. Set of Opportunities and Robustness

In Section 6, in order to calculate OPT, we focus on a simple random sample of 100 opportunities from the

10,737 virtual opportunities that appear in our GA dataset between August 2020 and March 2021 for which

we have precise data on capacity. In this section, we broaden our focus to the full set of 10,737 opportunities.

First, we note that the EFET of our sample is 19% compared to the EFET of 17% for the full dataset.

Though it is intractable to calculate OPT for the full dataset, we simulate AC and compare it to another

algorithm (SCP, defined in Section 6.2) over different instance sizes. In Figure 7a we show the value of AC

increases linearly with instance size, while the value of SCP increases at a slightly lower rate, resulting in even

better relative performance for AC for larger instance sizes.59 This highlights the importance of accounting

for conversion probabilities: the value of SCP scales sublinearly because its recommendations predominantly

consist of opportunities with frequent action but low conversion probability.

59 The values of AC and SCP are averaged over sufficient numbers of samples, dependent on the instance size.
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Figure 7 (a) The value of AC and SCP over different instance sizes and (b) the percent improvement of AC over

SCP over different instance sizes.

C.3. Arrival Sequence and Volunteer Conversion Probabilities

In this section, we provide additional details on how we construct the instance used in Section 6. Based on

volunteer activity, we estimate that there are T = 11,345 website visitors for our subset of 100 opportunities.

To arrive at this estimate, we first observe a subset of views for each opportunity, which we then scale upward

proportionally (by a factor of 5) to account for additional unobserved nation-wide traffic that views each

opportunity. The scaling factor of 5 was determined using VM’s back-end data, as the Google Analytics

data only contains data from volunteers in a subset of major cities and rural regions, listed in Appendix C.1,

meaning we only observe session-level data for approximately 20% of website traffic. We further augment the

number of arriving volunteers to account for the 45% of internal visitors who do not view any opportunity.

To generate the arrival sequence, we preserve the order of the traffic pattern observed in the session-level

data after appropriate scaling. For example, if volunteer 1 is external traffic who signs up for opportunity

a and volunteer 2 is internal traffic in the dataset, then in our simulation, the first five volunteers will all

be external traffic that will sign-up for opportunity a and the next five will be internal traffic for which we

generate pair-specific conversion probabilities. We note that volunteers six through ten may not have the

same conversion probabilities, but rather are each drawn independently from the distribution described in

Section 6. We do this because while a sign-up from external traffic could only have occurred in one way,

there are many counterfactual options for internal traffic that we cannot observe.

For each compatible opportunity, we estimate µi,t via a comprehensive logistic regression, using observable

opportunity characteristics as explanatory variables, including the opportunity’s cause and the conversion

probabilities of views on the first day that an opportunity is viewed within our time-frame, as we have access

to both views and sign-ups from GA. Though our model does not account for learning, we include the latter

in order to generate the most accurate estimates of conversion probabilities; we find that there is limited

value to learning past the first day. The result is presented in Table 2
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Opportunity Characteristics Internal Conversion Probabilities Std. Error
Odds-Ratio

intercept -2.96*** 0.17
first views outcome 2.85*** 0.08
women -0.25 0.16
justice -0.19 0.25
politics 0.06 0.34
homeless -0.03 0.20
health -0.09 0.13
seniors 0.16 0.17
environment -0.27 0.16
crisis -0.11 0.17
education -0.09 0.11
disabilities -0.06 0.17
sports 0.41 0.26
children -0.09 0.11
advocacy 0.08 0.11
community -0.08 0.09
employment -0.08 0.21
emergency 0.05 0.31
international 0.00 0.15
animals 0.00 0.18
lgbtq 0.15 0.30
race 0.24 0.23
arts -0.03 0.14
faith based -0.20 0.26
computers -0.10 0.13
board 0.08 0.19
hunger 0.10 0.21
media -0.19 0.16
immigrants -0.19 0.20
disaster -0.24 0.28
veterans 0.03 0.22

Log- Likelihood -1,385.1

Table 2 Logit Regression model to predict internal and external traffic conversion probabilities. The regression

uses 10,737 observations. P-values: < 0.01 ***, < 0.05 **, < 0.10 *.

C.4. Formal Definition of OPT

Here we present our definition of OPT, which is the solution to the following program, where f(k) represents

the probability of viewing a particular rank k ∈ [K]. Specifically, given the parameters of the opportunity-
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agnostic cascade model given in Section 6, f(k) = 0.3 + ((1− 0.3) · (1− 0.24))k.

max
~x

∑
i∈[n]

∑
t∈V int

∑
k∈[K]

µi,txi,t,kf(k) +
∑
i∈[n]

∑
t∈Vext

µi∗t ,t

subject to
∑
t∈V int

∑
k∈[K]

µi,txi,t,kf(k) +
∑
t∈Vext

µi∗t ,t ≤ ci ∀i∈ [n] (1)∑
i∈[n]

xi,t,k ≤ 1 ∀k ∈ [K], t∈ V int (2)∑
k∈[K]

xi,t,k ≤ 1 ∀i∈ [n], t∈ V int (3)

0≤ xi,t,k ≤ 1; ∀i∈ [n], t∈ V int, k ∈ [K] (4)

This program uses the set of variables ~x ∈Rn×|V int|×K . For the case study of Section 6, we choose K = 3

for tractable computation. This linear program is a deterministic fractional matching. As formalized in the

proposition below, the optimal value of OPT is thus an upper bound on the expected value of OPT.

Proposition 7 OPT is an upper bound on the expected value of OPT.

Proof of Proposition 7: To prove this, we will show that there exists a feasible solution in OPT that

achieves the expected value of OPT. Let x̂ be the ex-ante probability that opportunity i is assigned to position

k in the ranking shown to volunteer t∈ V int under OPT. To see that x̂ is a feasible solution in OPT, note that

(i) OPT can only fill each opportunity to capacity, (ii) at most one opportunity can appear in each position

k ∈ [K], (iii) each opportunity i ∈ [n] can appear in a ranking at most once, and (iv) a valid probability

must be between 0 and 1. By construction, the value of OPT under x̂ is equal to the expected value of OPT.

Since any feasible value of the linear program must be less than or equal to the optimal value of the linear

program, we see that the expected value of OPT must be less than or equal to the solution of OPT. �
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