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Abstract

Decision makers often aim to learn a treatment assignment policy under a capacity constraint on
the number of agents that they can treat. When agents can respond strategically to such policies,
competition arises, complicating the estimation of the effect of the policy. In this paper, we study
capacity-constrained treatment assignment in the presence of such interference. We consider a dynamic
model where heterogeneous agents myopically best respond to the previous treatment assignment policy.
When the number of agents is large but finite, we show that the threshold for receiving treatment under a
given policy converges to the policy’s mean-field equilibrium threshold. Based on this result, we develop
a consistent estimator for the policy effect and demonstrate in simulations that it can be used for learning
optimal capacity-constrained policies in the presence of strategic behavior.

1 Introduction

In policy learning, a decision maker aims to map observed individual characteristics to treatment assignments
[Bhattacharya and Dupas, 2012, Kitagawa and Tetenov, 2018, Manski, 2004]. For example, a school must
decide which applicants to admit and an employer must decide which candidates should be extended offers.
The observed data is typically assumed to be exogenous to the treatment assignment policy. However, when
human agents being considered for the treatment have knowledge of the assignment policy, the observed
data is not exogenous because agents may change their behavior in response to the policy.

A growing body of work focuses on policy learning in the presence of strategic human behavior [Björkegren
et al., 2020, Frankel and Kartik, 2019a, Munro, 2020]. In these works, an agent’s treatment assignment only
depends on their own strategic behavior and is unaffected by the behavior of others in the population. This
setup implicitly assumes that the decision maker does not have a capacity constraint on the number of agents
they can treat.

However, in applications such as college admissions and job hiring, strategic behavior arises while the
decision maker also has a capacity constraint on the number of agents they can treat. For example, students
may enroll in test preparation services and take advanced courses to improve their chances of getting accepted
to college [Bound et al., 2009], while a college can only accept a small fraction of the applicant pool. Similarly,
job candidates may join intensive bootcamps to improve their career prospects [Thayer and Ko, 2017], while
an employer has a fixed number of positions to fill. To enforce the capacity constraint, a decision maker
uses a selection criteria, such as a machine learning model, to score agents and assigns treatments to agents
who score above a threshold, given by a quantile of the score distribution [Bhattacharya and Dupas, 2012].
Competition arises because an agent’s treatment assignment depends on how their score ranks relative to
that of other agents.

In this work, we study the problem of capacity-constrained treatment assignment in the presence of
strategic behavior. We frame the problem in a dynamic setting. At each time step t, agents report their
covariates to the decision maker and the decision maker assigns treatments. Suppose a decision maker
deploys a fixed selection criteria for all time. At time step t + 1, agents react to the policy from time step
t, which depends on the fixed selection criteria and the threshold for receiving treatment at time step t. To
enforce the capacity constraint, the decision maker sets the threshold for receiving treatment at time step
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t+ 1 to the appropriate quantile of the score distribution observed at time step t+ 1. So, the threshold for
receiving treatment depends on agents’ strategic behavior. At an equilibrium induced by a fixed selection
criteria, the threshold for receiving treatment is fixed over time. The goal of the decision maker, and the
main goal of this work, is to find a selection criteria that obtains low equilibrium policy loss, which is the
policy loss obtained at the equilibrium induced by the selection criteria.

The goal of learning a policy that minimizes the equilibrium policy loss is motivated by prior works that
estimate policy effects or treatment effects at equilibrium [Heckman et al., 1998, Munro et al., 2021, Wager
and Xu, 2021]. Heckman et al. [1998] estimates the effect of a tuition subsidy program on college enrollment
by accounting for the program’s impact on the equilibrium college skill price. Munro et al. [2021] estimates
the effect of a binary intervention in a marketplace setting by accounting for the impact of the intervention on
the resulting supply-demand equilibrium. Wager and Xu [2021] estimates the effect of supply-side payments
on a platform’s utility in equilibrium.

We outline a dynamic model for capacity-constrained treatment assignment in the presence of generic
strategic behavior and specify the form of strategic behavior we consider in Section 2. Key elements of our
model include that agents are myopic, so the covariates they report to the decision maker at time step t+1
depend only on the state of the system in time step t. Also, drawing on the aggregative games literature
[Acemoglu and Jensen, 2010, 2015, Corchón, 1994], we assume that agents respond to an aggregate of other
agents’ actions. In particular, at time step t + 1, agents will react to the threshold for receiving treatment
from time step t, which is an aggregate of agents’ strategic behavior from time step t. Finally, based on
Frankel and Kartik [2019a,b], we assume that agents are heterogenous in their raw covariates (covariates
prior to modification) and in their ability to deviate from their raw covariates in their reported covariates.

In Section 3, we give conditions on our model that guarantee existence and uniqueness of equilibria in the
mean-field regime, the limiting regime where at each time step, an infinite number of agents are considered
for the treatment. Furthermore, we show that under additional conditions, the mean-field equilibrium arises
via fixed-point iteration. In Section 4, we translate these results to the finite regime, where a finite number
of agents, sampled i.i.d. at each time step, are considered for treatment. We show that as the number of
agents grows large, the behavior of the system converges to the equilibrium of the mean-field model in a
stochastic version of fixed-point iteration.

In Section 5, we propose a method for learning the selection criteria that minimizes the equilibrium policy
loss. Based on Wager and Xu [2021], we take the approach of optimizing selection criteria via gradient
descent. To this end, we develop a consistent estimator for the policy effect, the gradient of the equilibrium
policy loss. To estimate the policy effect without disturbing the equilibrium, we follow the approach of Munro
et al. [2021], Wager and Xu [2021]. We recover components of the policy effect by applying symmetric, mean-
zero perturbations to the selection criteria and the threshold for receiving treatment for each unit and running
regressions from the perturbations to outcomes of interest. In Section 6, through simulations, we validate
that our policy effect estimator can be used to learn optimal capacity-constrained policies in the presence of
strategic behavior.

1.1 Related Work

The problem of learning optimal treatment assignment policies has received attention in econometrics,
statistics, and computer science [Athey et al., 2018, Bhattacharya and Dupas, 2012, Kallus and Zhou,
2021, Kitagawa and Tetenov, 2018, Manski, 2004]. Treatments can be discrete-valued (typically, binary) or
continuous-valued, and the policy may be subject to budget or capacity constraints. Most related to our
work, Bhattacharya and Dupas [2012] study the problem of optimal capacity-constrained treatment assign-
ment, where the decision maker can only allocate treatments to 1 − q proportion of the population, where
q ∈ (0, 1). They show that the welfare-maximizing assignment policy is a threshold rule on the agents’
scores, where agents who score above q-th quantile of the score distribution are allocated treatment. Our
work differs from Bhattacharya and Dupas [2012] because we do not assume that the distribution of potential
outcomes is exogenous to the treatment assignment policy.

Björkegren et al. [2020], Frankel and Kartik [2019a], Munro [2020] study policy learning in the presence
of strategic behavior. Björkegren et al. [2020] proposes a structural model for manipulation, estimates the
parameters of this model with data from a field experiment, and computes the optimal policy under the
estimated model. Frankel and Kartik [2019a] demonstrates that optimal policies that account for strategic

2



behavior will underweight manipulable data. Munro [2020] studies the optimal unconstrained assignment
of binary-valued treatments in the presence of strategic behavior, without parametric assumptions on agent
behavior. The main difference between our work and these previous works is that we account for the
equilibrium effects of strategic behavior that arise via competition.

The area of strategic classification in computer science is also related to our work [Brückner et al., 2012,
Dalvi et al., 2004, Dong et al., 2018, Hardt et al., 2016, Jagadeesan et al., 2021, Levanon and Rosenfeld, 2022].
These works propose models for the interaction between the classifier and the strategic agent and methods for
training classifiers that are robust to gaming. In addition, other works in this area investigate how decision
makers can design classifiers that incentivize agents to invest effort in improving, instead of gaming [Ahmadi
et al., 2022, Kleinberg and Raghavan, 2020]. Nevertheless, the setting of strategic classification implicitly
assumes that an agent’s classification does not depend on the behavior of others in the population, limiting
the applicability of these methods to our setting of policy learning with capacity constraints.

To the best of our knowledge, Liu et al. [2021] is the only existing work that studies capacity-constrained
allocation in the presence of strategic behavior. Liu et al. [2021] introduces the problem of strategic ranking,
where agents’ rewards depend on their ranks after investing effort in modifying their covariates. They
consider a setting where agents are heterogenous in their raw covariates but homogenous in their ability to
modify their covariates. Under these assumptions, the authors find that agents’ post-effort ranking preserves
their original ranking by raw covariates and analyze the implications this has on decision maker, agent, and
societal utility. Our work differs from Liu et al. [2021] because following Frankel and Kartik [2019a,b], we
assume agents are heterogenous in both their raw covariates and ability to modify their reported covariates.
When agents can be heterogenous across both dimensions, ranks are not necessarily preserved after the
agents have modified their covariates. In our model, the selection criteria modulates how the equilibrium
post-effort ranks change from the pre-effort ranks; in other words, strategic behavior changes who receives
treatment, and thus fundamentally alters the nature of the resulting policy learning problem.

The problem of estimating the effect of an intervention in a marketplace setting is also relevant to our
work. Marketplace interventions can impact the resulting supply-demand equilibrium, introducing interfer-
ence and complicating estimation of the intervention’s effect [Blake and Coey, 2014, Heckman et al., 1998].
We find that our setting yields analogous challenges to estimating the effect of a marketplace intervention be-
cause when agents are strategic and the decision maker is capacity-constrained, the selection criteria impacts
the equilibrium threshold for receiving treatment. To estimate an intervention’s effect without disturbing
the market equilibrium, Munro et al. [2021], Wager and Xu [2021] propose a local experimentation scheme,
motivated by mean-field modeling. Methodologically, we adapt their mean-field modeling and estimation
strategies to estimate the effect of a policy in our setting.

Finally, we note that our dynamic model draws on game theory concepts, such as the myopic best response
and dynamic aggregative games. Our assumption that agents are myopic, or will take decisions based on
information from short time horizons, is a standard heuristic used in many previous works [Cournot, 1982,
Kandori et al., 1993, Monderer and Shapley, 1996]. In addition, our assumption that agents account for
the behavior of other agents through an aggregate quantity of their actions is a paradigm borrowed from
aggregative games [Acemoglu and Jensen, 2010, 2015, Corchón, 1994]. Most related to our work, Acemoglu
and Jensen [2015] considers a dynamic setting where the market aggregate at time step t is an aggregate
function of all the agents’ best responses from time step t, and an agent’s best response at time step t + 1
is selected from a constraint set determined by the market aggregate from time step t. Analogously, in our
work, the “market aggregate” is the threshold for receiving treatment. The threshold for receiving treatment
is a particular quantile of the agents’ scores, so we can view it as a function of agents’ reported covariates
(agents’ best responses). Furthermore, the covariates that agents report in time step t + 1 depend on the
value of the market aggregate, or the threshold for receiving treatment, in time step t.

2 Model

In this section, we first define a dynamic model for capacity-constrained treatment assignment in the presence
of strategic behavior and define the decision maker’s equilibrium policy loss in terms of this model. We then
propose a model for agent behavior in terms of myopic utility maximization and provide conditions under
which the resulting best response functions vary smoothly in problem parameters.
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2.1 Dynamic Model

Our dynamic model is similar to the dynamic aggregative game model presented in Acemoglu and Jensen
[2015] in that an aggregate quantity, the threshold for receiving treatment, depends on agents’ actions, and
the value of the aggregate quantity from a previous time step informs agent behavior in the subsequent time
step.

Let q ∈ (0, 1). At each time step t ∈ {1, 2, 3 . . . }, the decision maker assigns treatments to 1−q proportion
of a target population based on observed covariates. The decision maker’s selection criteria is a linear model
βββ ∈ B where B = Sd−1. The selection criteria is applied to observed covariates x. The decision maker fixes
the linear model βββ for all t, but they adjust the threshold for receiving treatment at each time step to ensure
that the capacity constraint is satisfied. The decision maker’s policy has the form of a threshold rule

π(x;βββ, s) = I(βββTx ≥ s), (2.1)

where βββ ∈ B and s ∈ R. Suppose that each agent has a private type ν ∼ F . Let the policy at time step
t be π(x;βββ, st). At time step t + 1, an agent with type ν will report covariates x(βββ, st, ν) to the decision
maker, reacting strategically to the policy deployed in time step t; see Section 2.3 for a detailed specification
for x(βββ, s, ν). Following Bhattacharya and Dupas [2012], we have that st+1, the threshold for receiving
treatment at time step t+ 1, is equal to the q-th quantile of the marginal distribution of βββTx(βββ, st, ν).

2.2 Population Equilibria and Policy Loss

The decision maker observes a loss ℓ(π, ν) if they assign a treatment π ∈ {0, 1} to an agent with type ν.
Note that an agent’s type may not be directly observable, but the decision maker can still measure ℓ(π, ν)
for each agent. As an example, in college admissions, the decision maker may aim to admit students with
high academic ability. Assuming that first-year GPA is a reasonable proxy for academic ability, the decision
maker can set ℓ(1, ν) to be the negation of an admitted agent’s first-year GPA. Since the decision maker
cannot assess the academic ability of students they did not admit, the decision maker incurs a loss ℓ(0, ν) = 0
on these students.

Given some specification of ℓ(π, ν) that the decision maker can observe, we can define the population
policy loss in the presence of strategic behavior and a capacity constraint. Let s denote the previous threshold
for receiving treatment, which is the threshold that agents respond to, and let r denote the realized threshold
for receiving treatment, which is the threshold that enforces the capacity constraint. The decision maker’s
population policy loss is given by

L(βββ, s, r) = E [ℓ(π(x(βββ, s, ν);βββ, r), ν)] . (2.2)

To enforce the capacity constraint, r must be set to the q-th quantile of the marginal distribution over
βββTx(βββ, s, ν). In our dynamic model, at time step t+ 1, the decision maker’s population policy loss is given
by L(βββ, st, st+1).

At an equilibrium induced by a fixed selection criteria βββ, the threshold for receiving treatment is fixed
over time. In other words, the previous and realized thresholds for receiving treatment are equal. Let s(βββ)
be the equilibrium threshold induced by the fixed selection criteria βββ. If st = s(βββ), then we have that
st+1, st+2 . . . is a constant sequence where each term is s(βββ). In the following definition, we express the
decision maker’s policy loss at equilibrium.

Definition 1 (Equilibrium Policy Loss). Given a fixed selection criteria βββ ∈ B. Let s(βββ) be an equilibrium
threshold, i.e., s(βββ) is equal to the q-th quantile of the marginal distribution over βββTx(βββ, s(βββ), ν). The
decision maker’s population policy loss at equilibrium is given by

Leq(βββ) = L(βββ, s(βββ), s(βββ)) = E [ℓ(π(x(βββ, s(βββ), ν);βββ, s(βββ)), ν)] .

Under conditions where the equilibrium is guaranteed to exist and is unique, the decision maker aims to
find βββ such that Leq(βββ) is minimized. Such an objective is motivated by the observation that it may not
be feasible for the decision maker to change their selection criteria at each time step. Instead, the decision
maker aims to select βββ that performs well with respect to the equilibrium behavior of the system.
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2.3 Agent Behavior

Next, we specify a flexible model for agent behavior and establish when agent behavior exhibits useful
properties, such as continuity and contraction. In our model, agents are heterogenous in their raw covariates
and ability to modify the covariates they report to the decision maker, and they myopically choose their
reported covariates based on a previous policy. Following Frankel and Kartik [2019a,b], we suppose that
each agent has a private type ν = (ηηη,γγγ) sampled from a joint distribution F . An agent’s raw covariates, or
covariates prior to modification, are denoted by ηηη ∈ X , where X is a convex, compact subset of Rd. The
agent’s ability to change their raw covariates is given by γγγ ∈ G, where G is bounded. The support of F is
contained in X × G. Note that F has bounded support.

An agent, with knowledge of the selection criteria βββ ∈ B and the previous threshold for receiving treatment
s ∈ R aims to deviate from their raw covariates in hopes of getting the treatment. Let the function
cν(y) : Rd → R capture the cost of an agent with type ν deviating y from their raw covariates ηηη. In
addition, we suppose the agent has imperfect control over the realized value of their modified covariates. For
example, an agent can influence their performance on an exam by changing the number of hours they study
but cannot perfectly control their exam score. To capture this uncertainty, the agent’s modified covariates
are subject to noise ϵϵϵ ∼ N(0, σ2Id). As a result, the agent’s utility function takes the following form

u(x;βββ, s, ν) = −cν(x− ηηη;γγγ) + π(x+ ϵϵϵ;βββ, s). (2.3)

The left term is the cost to the agent of deviating from their raw covariates. The right term is the reward
from receiving the treatment. Taking the expectation over the noise yields the following expected utility
function. Let G be the CDF of the distribution N(0, σ2).

Eϵϵϵ [u(x;βββ, s, ν)] = −cν(x− ηηη;γγγ) + 1−G(s− βββTx). (2.4)

We show an example expected utility function.

Example 2 (Expected Utility Function with Quadratic Cost). This expected utility function has a quadratic
cost of deviating from the raw covariates. Let γγγ ∈ G ⊂ (R+)d.

Eϵϵϵ [u(x;βββ, s, ν)] = −(x− ηηη)TDiag(γγγ)(x− ηηη) + 1−G(s− βββTx). (2.5)

We note that the cost function cν(x− ηηη;γγγ) = (x− ηηη)TDiag(γγγ)(x− ηηη) is 2 · λmin(Diag(γγγ))-strongly convex.

The best response mapping for an agent is obtained by finding the covariates x ∈ X that maximize the
expected utility function, as follows

x∗(βββ, s, ν) = argmax
x∈X

Eϵϵϵ [u(x;βββ, s, ν)] . (2.6)

The covariates that an agent reports to the decision maker is the agent’s best response subject to noise
ϵϵϵ ∼ N(0, σ2Id),

x(βββ, s, ν) = x∗(β, s, ν) + ϵϵϵ. (2.7)

2.4 Properties of Agent Best Response

Using the following two assumptions, we establish a condition on the noise distribution which guarantees
that the agent best response is a well-defined function and is continuously differentiable in βββ, s. We also
establish a related condition on the noise distribution which guarantees that the score of the agent best
response is a contraction mapping.

Assumption 1. The cost function cν(x) : Rd → R is twice continuously differentiable. In addition, cν is
also αν-strongly convex function for αν > 0 and cν(0) is its minimum.

Assumption 1 provides structure to the agent’s cost of covariate modification by requiring that it is
an αν-strongly convex function. The cost is minimized when the agent does not deviate from their raw
covariates ηηη.

In the following lemma, we give a condition on the noise distribution under which the agent best response
exists and is unique. This is essential so that we can treat the best response mapping as a well-defined function
of βββ and s.
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Figure 1: We plot βββTx∗(βββ, s, ν) vs. s at different noise levels. Left: If σ2 > 2
αν ·

√
2πe

, then the score of

the best response mapping is guaranteed to be contraction. Middle Left: If σ2 > 1
αν ·

√
2πe

, then the best

response mapping is guaranteed to be continuous. Middle Right: If σ2 ≤ 1
αν ·

√
2πe

, then the best response

mapping may be discontinuous. Right: In cases where the best response mapping is discontinuous, the
score of the best response mapping may not have a fixed point.

Lemma 1. Consider an agent with type ν ∈ X ×G. Under Assumption 1, the best response x∗(βββ, s, ν) exists.
Furthermore, if σ2 > 1

αν ·
√
2πe

, then the best response x∗(βββ, s, ν) is uniquely defined. Proof in Appendix C.1.

Furthermore, using the Implicit Function Theorem, we can show that under the same conditions, the
best response mapping is continuously differentiable in βββ, s.

Lemma 2. Consider an agent with type ν ∈ X × G. Under Assumption 1, if σ2 > 1
αν ·

√
2πe

and a best

response x∗(βββ, s, ν) ∈ Int(X ), then the best response is continuously differentiable in βββ and s. Proof in
Appendix C.2.

We can loosely interpret Lemma 1 as follows: if G has sufficiently high variance, then the best response
mapping exists and is unique.

Given a slightly stronger bound on M , we can strengthen our result and verify that the score of the
agent best response mapping is a contraction in s, i.e., there is κ ∈ (0, 1) such that, for any fixed βββ ∈ B and
ν ∈ X × G,

|βββTx∗(βββ, s, ν)− βββTx∗(βββ, s′, ν)| ≤ κ|s− s′| ∀s, s′ ∈ S.

The contraction property is useful because fixed-point iteration is known to converge for functions that are
contractions (see Theorem 23).

Lemma 3. Consider an agent with type ν ∈ X × G. Under Assumption 1, if σ2 > 2
αν ·

√
2πe

and a best

response x∗(βββ, s, ν) ∈ Int(X ), then for fixed βββ ∈ B, the score of an agent’s best response βββTx∗(βββ, s, ν) is a
contraction mapping in s. Proof in Appendix C.3.

We can loosely interpret Lemma 3 as follows: if G has sufficiently high variance (twice as high as that
required for continuity of the best response), then the score of the best response mapping is a contraction.

We end this section by numerically investigating the role of noise on the agents’ best response functions,
and verify that in the absence of sufficient noise unstable behaviors may occur. Qualitatively, the reason why
instability may arise is that, in a zero-noise setting, there are two modes of agent behavior. In one mode,
the agent does not deviate from their raw covariates at all, so βββTx∗(βββ, s, ν) = βββTηηη. This is either because
the threshold is low enough that the agent expects to receive the treatment without deviating from their raw
covariates or because the threshold is so high that the benefit of receiving the treatment does not outweigh
the cost of modifying their covariates. In the other mode, the threshold takes on intermediate values, so the
agent will invest the minimum effort to ensure that they receive the treatment under the previous policy,
meaning that βββTx∗(βββ, s, ν) = s. A discontinuity in the best response arises when an agent no longer finds
modifying their covariates beneficial. Introducing noise increases the agent’s uncertainty in whether they
will receive the treatment, which causes agents to be less reactive to the previous policy and smooths the
agent best response.
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Under different noise settings, we analyze the score of an agent’s best response with a fixed selection
criteria βββ while the threshold s varies. We consider an agent with type ν = (ηηη,γγγ) where ηηη = [3., 0.]T and
γγγ = [0.1, 1.]T . We suppose the decision maker’s model is βββ = [1., 0.]T . Let the agent have an expected utility
function with quadratic cost of covariate modification, as given in (2.5).

We visualize the score of the agent best response, βββTx∗(βββ, s, ν), as a function of s, the previous threshold
for receiving treatment. We plot βββTx∗(βββ, s, ν) vs. s at four different noise levels σ. In the left plot of Figure
1, the noise distribution satisfies σ2 > 2

αν ·
√
2πe

, so Lemma 3 is applicable, and we observe that the score of

the best response is a contraction in s. In the middle left plot, the noise distribution satisfies σ2 > 1
αν ·

√
2πe

,

so Lemma 2 is applicable, and the score of the best response is continuous. In the plots on the right of
Figure 1, the noise distributions satisfy σ2 ≤ 1

αν ·
√
2πe

. In such cases, the best response mapping may be

discontinuous and may not necessarily have a fixed point.
The lack of a fixed point in the score of an agent best response in in low-noise regimes (rightmost plot,

Figure 1) implies that there are distributions F over agent types for which there is no equilibrium in our
dynamic model in low-noise regimes. As a result, when the noise condition for continuity of the agent best
response does not hold, an equilibrium of our dynamic model may not exist. In Section 3, when we establish
uniqueness and existence of equilibria of our dynamic model, we assume a noise condition that guarantees
continuity properties of the agents’ best response mappings.

3 Mean-Field Results

Thus far, we have presented a dynamic model for capacity-constrained treatment assignment in the presence
of generic strategic behavior and specified the type of strategic behavior we consider in this work. Recall
that the decision maker’s objective, as outlined in Section 2, is to find a selection criteria βββ that minimizes
the equilibrium policy loss Leq(βββ). This is a sensible goal in settings where an equilibrium exists and is
unique for each selection criteria βββ in consideration. In this section, we give conditions for existence and
uniqueness of an equilibrium in the mean-field regime, where there are an infinite number of agents. We
describe a plausible mechanism through which the equilibrium will arise in the mean-field regime. Finally,
we show that the mean-field equilibrium threshold is differentiable with respect to βββ, which is crucial for
defining the policy effect in Section 5.

We instantiate the dynamic model from Section 2 in the mean-field regime. An infinite population of
agents with types sampled from F is considered for the treatment at each time step t. Let βββ be the decision
maker’s fixed selection criteria. At time step t + 1, suppose all agents best respond with knowledge of the
same selection criteria βββ and previous threshold for receiving treatment st, and noise distribution N(0, σ2Id).
Let Pβββ,st be the marginal distribution over scores of the form βββTx(βββ, st, ν). Let q(Pβββ,st) denote the q-th
quantile of Pβββ,st . Then, agents who score above st+1 = q(Pβββ,st) will receive the treatment. Iterating this
procedure gives a fixed-point iteration process

st+1 = q(Pβββ,st) t = 0, 1, 2, . . . (3.1)

As described in Section 2, the system is at the selection criteria βββ’s equilibrium if the threshold for receiving
treatment is fixed over time. The equilibrium induced by βββ is characterized by an equilibrium threshold s∗

for which s∗ = q(Pβββ,s∗). In the iterative process in (3.1) if s0 = s∗, then st = s∗ for all t.
To give conditions under which the equilibrium is unique, we use the following three assumptions.

Assumption 2. There are finitely many distinct types ν that occur with positive probability in F .

Assumption 2 is made for convenience. In combination with Assumption 1 for all agent types ν ∼ F ,
Assumption 2 guarantees that α∗(F ), as defined below, is positive.

α∗(F ) = inf
ν∈supp(F )

αν . (3.2)

We will omit the dependence of α∗(F ) on F when it is clear that there is only one type distribution of
interest.
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Assumption 3. For any agent type ν in the support of F and any choice of βββ ∈ B and s ∈ R, we assume
that x∗(βββ, s, ν) ∈ Int(X ). In other words, we require that agent best responses fall in the interior of the set
X .

We require Assumption 3 to ensure that the best response mapping for each agent type ν ∼ F is uniquely
defined, so that Pβββ,s is a valid distribution function. These assumptions, along with a noise condition that
σ2 > 1

α∗·
√
2πe

, guarantee uniqueness of the equilibrium. Note that this condition ensures that for all agent

types in F , their best response mappings are well-defined (Lemma 1) and continuously differentiable in βββ, s
(Lemma 2).

Theorem 4. Fix βββ ∈ B. Under Assumption 1, 2, and 3, if σ2 > 1
α∗·

√
2πe

and q(Pβββ,s) has a fixed point

(s = q(Pβββ,s) has a solution), then the fixed point must be unique. Proof in Appendix D.1.

The proof of uniqueness relies on exhibiting useful properties of the distribution function Pβββ,s(r), namely
that it is continuously differentiable in its arguments and has a well-defined inverse function. When this
holds, we have that a fixed point of q(Pβββ,s) is given by a value of s that solves the equation Pβββ,s(s) = q.
Finally, we observe that Pβββ,s(s) is a monotonically increasing function, so it can intersect the horizontal line
y = q in at most one point, yielding uniqueness.

Under the same assumptions, we can also show that the q(Pβββ,s) is continuously differentiable in βββ and s.
This result follows from the Implicit Function Theorem.

Lemma 5. Under Assumption 1, 2, and 3, if σ2 > 1
α∗·

√
2πe

, then q(Pβββ,s) is continuously differentiable in βββ

and s. Proof in Appendix D.2.

With the result that q(Pβββ,s) is continuous, we can establish the existence of the equilibrium in the
mean-field model through an application of Intermediate Value Theorem.

Theorem 6. Fix βββ ∈ B. Under Assumption 1, 2, and 3, if σ2 > 1
α∗·

√
2πe

, then there exists a threshold s

such that q(Pβββ,s) = s. In other words, q(Pβββ,s) has at least one fixed point. Proof in Appendix D.3.

The next two results give conditions under which the equilibrium arises via fixed-point iteration (3.1).
Corollary 7 is a direct application of Banach’s Fixed-Point Theorem.

Corollary 7. Fix βββ ∈ B. Under Assumptions 1, 2, and 3, if q(Pβββ,s) is a contraction mapping in s where s∗

is the unique fixed point of q(Pβββ,s), then fixed-point iteration (3.1) converges to s∗. Proof in Appendix D.4.

In Corollary 8, we give a sufficient condition for ensuring that q(Pβββ,s) is a contraction. The sufficient
condition is equivalent to ensuring that for all agent types ν in the support of F , their best response mappings
are contractions in s. In the proof of this corollary, we use the fact that the derivative of q(Pβββ,s) with respect
to s is a convex combination of the derivatives of the agents’ best response mappings with respect to s.
We note that a function is a contraction if and only if its derivative is bounded between −1 and 1 (Lemma
22). So, ensuring that each agent’s best response mapping is a contraction guarantees that q(Pβββ,s) is a
contraction. We note that this condition is sufficient but not necessary for q(Pβββ,s) to be a contraction.

Corollary 8. Fix βββ ∈ B. Under Assumptions 1, 2, and 3, if σ2 > 2
α∗·

√
2πe

, then q(Pβββ,s) is a contraction in

s and fixed-point iteration (3.1) converges to s∗, the unique fixed point of q(Pβββ,s). Proof in Appendix D.5.

Thus far, we have demonstrated that under sufficient regularity conditions, for a fixed selection criteria βββ,
an equilibrium exists and is unique in the mean-field limit, and fixed-point iteration is a mechanism through
which this equilibrium arises. Crucially, the existence and uniqueness of equilibria induced by fixed selection
criteria allows us to define a function s(βββ) : B → S that maps selection criteria βββ ∈ B to the equilibrium
threshold s(βββ) ∈ S that characterizes the criteria’s mean-field equilibrium. The following theorem establishes
the differentiability of s.

Corollary 9. Under Assumption 1, 2, and 3, if σ2 > 1
α∗·

√
2πe

, then we can define a function s : B → R
that maps model parameters βββ to the unique fixed point s∗ ∈ R that satisfies q(Pβββ,s∗) = s∗. The function s
is continuously differentiable in βββ. Proof in Appendix D.6.
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We conclude this section by observing that a selection criteria impacts the level of competition that
agents experience through its impact on the equilibrium threshold for receiving the treatment. Although
different selection criteria will induce different equilibrium thresholds in the mean-field limit, under regularity
conditions the equilibrium thresholds will vary smoothly with the selection criteria. These results make it
possible to define and estimate policy effects in Section 5.

4 Finite Sample Approximation

Understanding equilibrium behavior of our dynamic model in the finite regime is of interest because our
ultimate goal is to learn optimal equilibrium policies in finite samples. In this section, we instantiate the
dynamic model from Section 2 in the regime where a finite number of agents are considered for the treatment
at each time step. A difficulty of the finite regime is that deterministic equilibria do not exist. Instead, we
give conditions under which stochastic equilibria arise and show that, in large samples, these stochastic
equilibria sharply approximate the mean-field limit derived above.

Let βββ be the decision maker’s fixed selection criteria. At each time step, n new agents with types sampled
i.i.d. from F are considered for the treatment. For example, in the application of college admissions, the
sampled agents at each time step represent a class of students applying for admission each year. At time
step t+1, the n agents who are being considered for the treatment best respond with knowledge of the same
selection criteria βββ, previous threshold for receiving treatment ŝtn, and noise distribution N(0, σ2Id). In the
finite model, the decision maker observes an empirical score distribution Pn

βββ,ŝtn
. Let q(Pn

βββ,ŝtn
), denote the q-th

quantile of Pn
βββ,ŝtn

. Then, agents who score above ŝt+1
n = q(Pn

βββ,ŝtn
) will receive the treatment. Iterating this

procedure gives a stochastic version of fixed-point iteration

ŝt+1
n = q(Pn

βββ,ŝtn
), t = 0, 1, 2, . . . (4.1)

Since new agents are sampled at each time step, q(Pn
βββ,·) is a random operator. Iterating the random operator

q(Pn
βββ,·) given some initial threshold ŝ0n yields a stochastic process {ŝtn}t≥0. We note that for any fixed βββ, the

random operator q(Pn
βββ,·) approximates the deterministic function q(Pβββ,·).

In Section 3, we showed that there are conditions under which fixed-point iteration of the mean-field
model’s deterministic operator q(Pβββ,·) converges to s∗, the mean-field equilibrium threshold. In the finite
model, if q(Pn

βββ,·) closely approximates q(Pβββ,·), we may expect that there are conditions under which the

stochastic process {ŝtn}t≥0 will eventually oscillate in a small neighborhood about s∗. This is illustrated in
Figure 2.

We define a constant that will be used in our concentration inequality and convergence result for the
behavior of the finite system. For ϵ > 0

Mϵ = inf
s∈R

min{Pβββ,s(q(Pβββ,s) + ϵ)− q, q − Pβββ,s(q(Pβββ,s)− ϵ)}. (4.2)

The following result guarantees that Mϵ is positive and gives a finite-sample concentration inequality for the
behavior of q(Pn

βββ,s).

Lemma 10. Under Assumption 1, 2, 3, if σ2 > 1
α∗

√
2πe

, then Mϵ > 0 and

P (|q(Pβββ,s)− q(Pn
βββ,s)| < ϵ) ≥ 1− 4e−2nM2

ϵ .

Proof in Appendix E.1.

Notably, the bound in the concentration inequality does not depend on the particular choice of s. We use
this lemma to characterize the behavior of the system of n agents for sufficiently large iterates t and number
of agents n in Theorem 11. Theorem 11 shows under the same conditions that enable fixed-point iteration
in the mean-field model to converge to the mean-field equilibrium threshold (3.1), sufficiently large iterates
of the stochastic fixed-point iteration in the finite model (4.1) will lie in a small neighborhood about the
mean-field equilibrium threshold with high probability. We can view these iterates as stochastic equilibria
of the finite system.
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Figure 2: Given a fixed distribution F over agent types, we consider the finite model for various n and the
mean-field model. In this example, the conditions of Theorem 7 are satisfied, so fixed-point iteration in the
mean-field model (3.1) converges to its unique fixed point. Fixed-point iteration in the finite models (4.1)
oscillates about the fixed point of the mean-field model. For large n, we observe that the iterates {ŝtn} are
more concentrated about the fixed point of the mean-field model.

Theorem 11. Fix βββ ∈ B. Suppose Assumptions 1, 2, 3 hold. Let ϵ ∈ (0, 1), δ ∈ (0, 1), and s∗ is the
mean-field equilibrium threshold induced by selection criteria βββ. Let κ is the Lipschitz constant of q(Pβββ,s).

Let ϵg = ϵ(1−κ)
2 . Let S = |ŝ0n − s∗|. If σ2 > 2

α∗
√
2πe

, then for t such that

t ≥
⌈ log( ϵ

2S )

log κ

⌉
and n such that

n ≥ 1

2M2
ϵg

log(
4t

δ
),

we have that
P (|ŝtn − s∗| ≥ ϵ) ≤ δ.

Proof in Appendix E.2.

The main idea of the proof of this result is at each time step the quantity |ŝtn − s∗| can be decomposed
into two terms,

|ŝtn − s∗| ≤ |q(Pn
βββ,ŝt−1

n
)− q(Pβββ,ŝt−1

n
)|+ |q(Pβββ,ŝt−1

n
)− s∗|.

The first term on the right side is a noise term that arises due to the difference between an empirical quantile
and a population quantile. The second term on the right side can be upper bounded by κ|ŝt−1

n − s∗| because
q(Pβββ,·) is assumed to be a contraction with Lipschitz constant κ. Recursively applying this decomposition
k times leaves a vanishing series of dependent noise terms and a term that depends on the distance of the
t − k-th iterate from s∗. Analyzing the series of noise terms is difficult due to the dependence between the
noise terms. We sidestep this challenge by introducing a sequence of independent random variables each of
which stochastically dominates the corresponding noise terms in our series of interest. Analysis of the series
of the independent random variables yields our result.

Also, the following corollary is a building block for our consistency results in Section 5.

Corollary 12. Fix βββ ∈ B. Let S, κ be defined as in Theorem 11. Let {tn} be a sequence such that tn ↑ ∞
as n→∞ and tn ≺ exp(n) (tn grows slower than exponentially fast in n) Under the conditions of Theorem

11, ŝtnn
p−→ s∗, where s∗ is the unique fixed point of q(Pβββ,s). Proof in Appendix E.3.
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5 Learning Policies via Gradient Descent

In this section, we apply the equilibrium concepts developed in Sections 3 and 4 to define and estimate the
policy effect, the gradient of the equilibrium policy loss with respect to the selection criteria. To enable
learning of the optimal policy, we rely on estimation of the derivative of the policy loss, a method that is
motivated by prior works [Chetty, 2009, Wager and Xu, 2021].

First, we give conditions under which the loss function is continuously differentiable as a function of βββ
and define the policy effect in terms of the mean-field equilibrium threshold. Next, using results from Section
4, we give methods for estimating these effects in finite samples in a unit-level randomized experiment as in
Munro et al. [2021], Wager and Xu [2021]. Finally, we propose a method for learning the optimal policy by
using the policy effect estimator.

5.1 Policy Effect

Recall the equilibrium policy loss defined in Section 2.

Lemma 13. Under the conditions of Corollary 9, Leq(βββ) is continuously differentiable in βββ. Proof in
Appendix F.1.

From the definition of Leq(βββ) in Definition 1, we have that the total derivative of Leq(βββ) can be written
as

dLeq

dβββ
(βββ) =

∂L

∂βββ
(βββ, s(βββ), s(βββ)) +

(∂L
∂s

(βββ, s(βββ), s(βββ)) +
∂L

∂r
(βββ, s(βββ), s(βββ))

)
· ∂s
∂βββ

(βββ). (5.1)

We decompose the total derivative of Leq(βββ), or the policy effect, into two parts. The first term corresponds
to the model effect and the second term corresponds to the equilibrium effect.

Definition 3 (Model Effect). Let τME denote the model effect of deploying selection criteria βββ on the
equilibrium policy loss the decision maker incurs.

τME(βββ) =
∂L

∂βββ
(βββ, s(βββ), s(βββ)).

The selection criteria βββ impacts the decision maker’s loss because agents modify their covariates in
response to the criteria and the criteria is also used to score the agents. Both of these influence the treatments
that the agents receive and thus the loss the decision maker incurs.

In the absence of capacity constraints, the model effect is sufficient for capturing the policy effect. How-
ever, due to the decision maker’s capacity constraint, the equilibrium threshold for receiving treatment also
depends on the selection criteria. So, we must also account for how the decision maker’s loss changes with
respect to the equilibrium threshold and how the equilibrium threshold changes with respect to the selection
criteria. Following notation from (2.2), we write ∂L/∂s and ∂L/∂r for the partial derivatives of L in its
second and third arguments respectively.

Definition 4 (Equilibrium Effect). Let τEE denote the equilibrium effect of deploying selection criteria βββ
on the equilibrium policy loss the decision maker incurs.

τEE(βββ) =
(∂L
∂s

(βββ, s(βββ), s(βββ)) +
∂L

∂r
(βββ, s(βββ), s(βββ))

)
· ∂s
∂βββ

(βββ).

The previous threshold for receiving treatment s impacts the decision maker’s loss because agents modify
their covariates in response to s. This influences the treatments that agents receive and thus the loss the
decision maker incurs. The realized threshold for receiving treatment r impacts the decision maker’s loss
because it determines agents’ treatment assignments, which influences the loss the decision maker incurs.
At equilibrium, we have that s = r = s(βββ), so we can account for both of these effects simultaneously.

Definition 5 (Policy Effect). Let τPE denote the policy effect of deploying selection criteria βββ on the
equilibrium policy loss the decision maker incurs.

τPE(βββ) = τME(βββ) + τEE(βββ).

The policy captures both the model effect and equilibrium effect.
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5.2 Estimation of Policy Effect

We derive estimators for the model, equilibrium, policy effects through a unit-level randomized experiment
in a finite samples. In a system consisting of n agents, we apply symmetric, mean-zero perturbations to
the parameters of the policy that each agent responds to. Let R represent the distribution of Rademacher
random variables and let Rd represent a distribution over d-dimensional Rademacher random variables. For
agent i, we perturb the policy parameters as follows

βββi = βββ + bζζζi, ζζζi ∼ Rd,

si = s+ bζi, ζi ∼ R.

In practice, these perturbations can be applied by telling agent i that they will be scored according to βββi

instead of βββ and a small shock of size −bζi will be applied to their score. Instead of reporting covariates in
response to the previous policy π(x;βββ, s), we presume that with information about the perturbations, agent
i will report covariates in response to a policy π(x;βββi, si) as follows:

x(βββi, si, νi) = x∗(βββi, si, νi) + ϵϵϵi ϵϵϵi ∼ N(0, σ2Id),

where
x∗(βββi, si, νi) = argmax

x∈X
Eϵϵϵ [u(x;βββi, si, νi)] . (5.2)

Let Pβββ,s,b denote the distribution over scores when each agent i responds to (βββi, si) and the prescribed
perturbation is applied to the agent’s score. For clarity, we contrast the form of a score sampled from Pβββ,s to
that of the form of a score sampled from Pβββ,s,b. An agent with type νi who best responds to βββ, s will obtain
a score βββTx(βββ, s, νi) in the unperturbed setting. An agent with type νi who best responds to a perturbed
version of βββ, s will obtain a score βββT

i x(βββi, si, νi)− bζi.
The purpose of applying these perturbations is so that we can recover the relevant gradient terms by

running a linear regression from the perturbations to outcomes of interest, which include the decision maker’s
loss and the proportion of agents whose score exceeds a threshold r. To construct the estimators of the model
and equilibrium effects, we rely on gradient estimates of the loss function L(βββ, s, r) and gradient estimates
of the complementary CDF of the score distribution Π(βββ, s; r), which is defined as

Π(βββ, s; r) = 1− Pβββ,s(r). (5.3)

In this experiment, we suppose that thresholds evolve by the stochastic fixed-point iteration process
below. Note that it differs slightly from the process given in (4.1).

ŝt+1
b,n =


q(Pn

βββ,ŝtn,b
) q(Pn

βββ,ŝtn,b
) ∈ [−D,D]

−D q(Pn
βββ,ŝtn,b

) < −D
D q(Pn

βββ,ŝtn,b
) > D

(5.4)

This process differs from (4.1) because it includes perturbations of size b to the selection criteria and threshold
and restricts the threshold to a bounded set S = [−D,D] where D is sufficiently large constant so that the
equilibrium threshold s∗ ∈ S. Such a set exists because it can be shown there exists D > 0 such that
|q(Pβββ,s)| < D for all s ∈ R.

Analyzing the stochastic process {ŝtn}t≥0 generated by the iteration above presents two technical chal-
lenges. First, the above stochastic process truncates the threshold values so that they lie in S, whereas the
results from Section 4 do not involve truncation. Nevertheless, the truncation is a contraction map to the
equilibrium threshold, so the results of Section 4 also apply to the stochastic fixed point iteration process
with truncated threshold values. The other challenge is that the results from Section 3 and Section 4 focus
on the setting where all agents best respond to the same policy π(x;βββ, s). Nevertheless, under the following
assumption, we can show that for sufficiently small b, analogous results hold under unit-level perturbations,
where each agent i best responds to the policy π(x;βββi, si).

Assumption 4. For all types ν = (ηηη,γγγ) that have positive probability in F , we have that ηηη ∈ Int(X ).
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To show that results from Section 4 transfer to the setting with unit-level perturbations, we can define a
new distribution over agent types F̃ and new cost functions. When agents with types sampled from F̃ best
respond to π(x;βββ, s) according to the new cost function, the score distribution that results equals Pβββ,s,b.

Now, we can define the model effect estimator.

Definition 6 (Model Effect Estimator). We consider an experiment where n agents are considered for
the treatment. Let b be the size of the perturbation. Let each row of Z ∈ Rn×d correspond to bζζζTi , the
perturbation applied to the selection criteria observed by the i-th agent. Since the n agents will best respond
to these perturbations as in (5.2), we observe an empirical distribution over scores Pn

βββ,s,b. Let each entry of
ℓℓℓ(βββ, s, r) ∈ Rn correspond to the loss the decision maker incurs on the i-th agent as follows

ℓℓℓi(βββ, s, r) = ℓ(π(x(βββi, si, νi);βββi, r + bζi), νi). (5.5)

Let Γ̂ℓ,βββ(βββ, s) be the regression coefficient that is obtained by running OLS of ℓℓℓ on Z. In particular,

Γ̂ℓ,βββ(βββ, s, r) = b−1
( 1
n

n∑
i=1

ζζζiζζζ
T
i

)−1( 1
n

n∑
i=1

ζζζiℓℓℓi(βββ, s, r)
)
.

The model effect estimator with sample size n, perturbation size b, and iteration t as

τ̂ tME,b,n(βββ) = Γ̂ℓ,βββ(βββ, ŝ
t
b,n, ŝ

t+1
b,n ), (5.6)

where ŝtb,n is given by (5.4).
To prove consistency of this estimator, we require additional conditions on the loss function ℓ.

Assumption 5. The functions ℓ(0, ν) and ℓ(1, ν) are continuous on X × G. In addition, ℓ(π, ν) is bounded
on {0, 1} × X × G.

Theorem 14. Let {tn} be a sequence such that tn ↑ ∞ as n → ∞ and tn ≺ exp(n). Let S = [−D,D] for
a sufficiently large constant D > 0, so that the equilibrium threshold s∗ ∈ S. We consider the sequence of
model effect estimators given by τ̂ tnME,n(βββ). Under Assumptions 1, 2, 3, 4, and 5, if σ2 > 2

α∗
√
2πe

, then there

exists a sequence {bn} such that bn → 0 so that τ̂ tnME,bn,n
(βββ)

p−→ τME(βββ). Proof in Appendix F.2.

Second, we define the equilibrium effect estimator. Although the same approach applies, estimating the
equilibrium effect is more complicated than estimating the model effect. We estimate the equilibrium effect
by estimating the two components of the equilibrium effect, ∂L

∂s + ∂L
∂r and ∂s

∂βββ .

Definition 7 (Equilibrium Effect Estimator). We consider an experiment where n agents are considered
for the treatment. Let b be the size of the perturbation. Let each row of Zβββ ∈ Rn×d and of Zs ∈ Rn×d

correspond to the perturbation applied to the linear model and baseline score, respectively for the i-th agent.
Since the n agents will best respond to these perturbations as in (5.2), we observe an empirical distribution
over scores Pn

βββ,s,b. Let each entry of ℓℓℓ,πππ ∈ Rn correspond to the following outcomes for the i-th agent

ℓℓℓi(βββ, s, r) = ℓ(π(x(βββi, si, νi);βββi, r + bζi), νi),

πππi(βββ, s, r) = π(x(βββi, si, νi);βββi, r).

Let Γ̂ℓ,s,ℓ,r(βββ, s), Γ̂π,βββ(βββ, s, r), and Γ̂π,s(βββ, s, r) correspond to the regression coefficients from running OLS
of ℓℓℓ on Zs, πππ on Zβββ , and πππ on Zs, respectively. In particular,

Γ̂ℓ,s,ℓ,r(βββ, s, r) = b−1
( 1
n

n∑
i=1

ζiζ
T
i

)−1( 1
n

n∑
i=1

ζiℓℓℓi(βββ, s, r)
)
,

Γ̂π,βββ(βββ, s, r) = b−1
( 1
n

n∑
i=1

ζζζiζζζ
T
i

)−1( 1
n

n∑
i=1

ζζζiπππi(βββ, s, r)
)
,

Γ̂π,s(βββ, s, r) = b−1
( 1
n

n∑
i=1

ζiζ
T
i

)−1( 1
n

n∑
i=1

ζiπππi(βββ, s, r)
)
.
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Let {hn} be a sequence such that hn → 0 and nhn →∞. Let pnβββ,s,bn(r) denote a kernel density estimate

of pβββ,s,bn(r) with kernel function k(z) = I(z ∈ [− 1
2 ,

1
2 )) and bandwidth hn.

We define the model effect estimator with sample size n and iteration t as

τ̂ tEE,b,n(βββ) = Γ̂ℓ,s,ℓ,r(βββ, ŝ
t
b,n, ŝ

t+1
b,n ) ·

(
1

pn
βββ,ŝtb,n,b

(ŝtb,n)− Γ̂π,s(βββ, ŝtb,n, ŝ
t
b,n)
· Γ̂π,βββ(βββ, ŝ

t
b,n, ŝ

t
b,n)

)
. (5.7)

In Theorem 15, we show that these three linear approximations and the density estimate of the score
distribution enable us to estimate the equilibrium effect.

Theorem 15. Let {tn} be a sequence such that tn ↑ ∞ as n → ∞ and tn ≺ exp(n). We consider the
sequence of equilibrium effect estimators given by τ̂ tnEE,n(βββ). Under the conditions of Theorem 14, there exists

a sequence {bn} such that bn → 0 so that τ̂ tnEE,n(βββ)
p−→ τEE(βββ). Proof in Appendix F.3.

Finally, we can sum the estimators of the model and equilibrium effects to estimate the policy effect.

Corollary 16. Let {tn} be a sequence such that tn ↑ ∞ as n → ∞ and tn ≺ exp(n). We consider the
sequence of approximate policy effects given by

τ̂ tnPE,bn,n
(βββ) = τ̂ tnME,bn,n

(βββ) + τ̂ tnEE,bn,n
(βββ).

Under the conditions of Theorem 14, there exists a sequence {bn} such that bn → 0 so that τ̂ tnPE,n(βββ)
p−→

τPE(βββ). Proof in Appendix F.4.

5.3 Learning the Optimal Policy

We now describe an algorithm (see Algorithm 1) for learning the optimal policy. Following Wager and
Xu [2021], the algorithm entails first learning equilibrium-adjusted gradients of the policy loss as discussed
above and then updating the selection criteria via gradient descent. In this paper, we will only investigate
empirical properties of this approach, and refer to Wager and Xu [2021] for formal results for this type of
gradient-based learning.

The decision maker runs the algorithm for J epochs. In Section 2, we describe that it may be infeasible
for the decision maker to update the selection criteria at each time step. This algorithm requires the decision
maker to deploy an updated selection criteria at each epoch j. In other words, updates to the selection criteria
are necessary but infrequent. We emphasize that deploying different selection criteria is only necessary for the
learning procedure, and ultimately, we aim to learn a fixed selection criteria that minimizes the equilibrium
policy loss.

In epoch j, the decision maker deploys a policy βββj . Through the stochastic fixed-point iteration process
with perturbations (5.4), a stochastic equilibrium induced by βββj emerges, yielding the threshold for receiving
treatment sj . Each agent best responds to their perturbed policy and the decision maker observes their
reported covariates. Following the procedure from Section 5.2, the decision maker can then use the outcomes
and the perturbations to estimate the policy effect of βββj on the equilibrium policy loss (Algorithm 2). The
decision maker can set βββj+1 by taking a gradient descent step from βββj using the policy effect estimator as
the gradient. Any first-order variant of stochastic gradient descent can be used. In our experiments, we use
vanilla stochastic gradient descent and projected stochastic gradient descent.

6 Numerical Experiments

In this section, we demonstrate that the policy effect estimator defined Section 5 can be used to learn a
capacity-constrained policy that achieves lower equilibrium policy loss compared to approaches that do not
account for strategic behavior or only account for the model effect. First, we give a one-dimensional toy
example, where we suppose that F contains cross-types, which are pairs of agent types where one agent
has higher ability to modify their covariates and the other has more favorable raw covariates. In the toy
example, we demonstrate that using the policy effect estimator τ̂PE enables a decision maker to learn the
optimal solution. Second, in a high-dimensional (d = 10) simulation with a generic distribution F over agent
types, we also demonstrate that learning with the policy effect estimator τ̂PE yields solutions with lower
equilibrium policy loss than just the model effect estimator τ̂ME.
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Figure 3: Left: We plot the (expected) equilibrium policy loss across θ = arctan(βββ1/βββ0). Deploying βββ =

β̃ββ (equivalently, θ = 0) does not yield an optimal loss. We note that the equilibrium policy loss has a global

minimum βββ∗ = [0.345, 0.938]T (equivalently, θ∗ = 1.22). Middle: When βββ = β̃ββ, the naturals make up only
34% of agents who score above the threshold. Right: When βββ = βββ∗, the naturals make up 69% of agents
who score above the threshold.

6.1 Toy Example

For a one-dimensional example, we consider policies with the following parametrization

βββ = [cos θ, sin θ]T , where θ ∈ S1.

Algorithm 1: Gradient Descent with τ̂PE

while j ≤ J do
Decision maker deploys βββj ;
Stochastic fixed-point iteration for sufficiently many iterations with unit-level perturbations (see
(5.4)) until sj is reached ;

for i ∈ {1 . . . n} do
Sample random perturbation ζζζi ∼ Rd and ζi ∼ R;

βββj
i ← βββj + bnζζζi;

sji ← sj + bnζi ;

Agent i best responds to βββj
i , s

j
i ;

Decision maker observes best response xj
i ;

end

Given the scores {βββj
ix

j
i − bnζ

j
i }ni=1, the decision maker computes the q-th quantile of the scores

qj and density of scores at qj , yields ρj ;
for i ∈ {1 . . . n} do

Decision incurs loss ℓℓℓji and measures

πππj
i ← I((βββj

i )
Txj

i > sj);

end

Zj
βββ ← bnζζζ

j is the n× d matrix of perturbations ζζζ;

Zj
s ← bnζ

j is the n× 1 matrix of perturbations ζ;
ℓℓℓj is the n-length vector of losses ℓℓℓi ;
πππj is the n-length vector of indicators πππi;

Construct gradient estimate Γj from Zj
βββ ,Z

j
s, ℓℓℓ

j ,πππj , ρj (See Algorithm 2);
Take a projected gradient descent step
βββj+1 ← ProjB(βββ

j − a · Γj) ;

end
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Algorithm 2: Construct gradient estimates

Run OLS of ℓℓℓj on Zj
βββ : Γ

j
ℓ,βββ ← ((Zj

βββ)
TZj

βββ)
−1(Zj

βββ)
Tℓℓℓj) ;

Run OLS of ℓℓℓj on Zj
s: Γ

j
ℓ,s,ℓ,r ← ((Zj

s)
TZj

s)
−1((Zj

s)
Tℓℓℓj) ;

Run OLS of πππj on Zj
βββ : Γ

j
π,βββ ← ((Zj

βββ)
TZj

βββ)
−1((Zj

βββ)
Tπππj) ;

Run OLS of πππj on Zj
s: Γ

j
π,s ← ((Zj

s)
TZj

s)
−1((Zj

s)
Tπππj) ;

Γj
s,βββ ←

1

ρj−Γj
π,s
· Γj

π,βββ .

Γj ← Γj
ℓ,βββ + Γj

ℓ,s,ℓ,r · Γ
j
s,βββ

We suppose that the capacity constraint limits the decision maker to accept only 30% of the agent population.
To define the decision maker’s loss, suppose ℓ is specified as follows

ℓ(π, ν) =

{
−ηηη1 π = 1

0 π = 0
.

The decision maker’s equilibrium policy loss Leq(βββ) is given by Definition 1.
We consider an agent distribution where agents are heterogeneous in their raw covariates and ability to

modify their observed covariates. We suppose that

ηηη ∈ [0, 10]2, γγγ ∈ [0.01, 20]2, x ∈ [0, 10]2.

The variance of the noise distribution σ2 is set to ensure the continuous differentiability property of the
quantile mapping of the score distribution; we set σ = 3.30. Agents optimize the quadratic utility function
in (2.5). So, the entry γγγi quantifies the cost of gaming ηηηi.

Motivated by Frankel and Kartik [2019b], we consider an agent distribution with two groups of agent
types in the population of equal proportion, the naturals and the gamers. The naturals have

ηηη1, ηηη2 ∼ Uniform[5, 7], γγγ1, γγγ2 ∼ Uniform[10, 20].

In contrast, the gamers have

ηηη1, ηηη2 ∼ Uniform[3, 5], γγγ1 ∼ Uniform[0.01, 0.02], γγγ2 ∼ Uniform[10, 20].

In this simulation, there are 10 agent types, 5 naturals and 5 gamers. The naturals and gamers are cross
types as in Frankel and Kartik [2019b] because the naturals have higher values of ηηη compared to the gamers
and the gamers have lower cost to modifying ηηη1 compared to the naturals.

Note that the decision maker incurs lower loss when they admit any natural compared to when they admit
any gamers because naturals have higher ηηη1 compared to gamers. Under the naive assumption that agents
will report x = ηηη, the decision maker minimizes their policy loss by using the selection criteria β̃ββ = e1.
However, the gamers have high ability to deviate from ηηη1 when reporting x1. So, a naive application of
β̃ββ as the selection criteria could potentially result in the decision maker accepting many gamers, yielding
suboptimal policy loss.

Intuitively, there should exist a better policy in this setting. We note that all agents are relatively
homogenous in their ability to deviate from ηηη2 when reporting x2 because γγγ2 ∼ Uniform[10, 20] for all
agents. At the same time, ηηη2 is correlated with ηηη1. So, a selection criteria that places some weight on x2

should allow the decision maker to obtain lower policy loss by accepting more naturals.
We plot the equilibrium policy loss of decision maker as a function of θ = arctan(βββ1/βββ0) in (Figure 3,

left plot). As expected, we observe that deploying the naive policy βββ = β̃ββ, which corresponds to θ = 0, is

suboptimal for minimizing the equilibrium policy loss. When βββ = β̃ββ, we observe that only 35% of agents who
score above s(βββ) are naturals (Figure 3, middle plot). The policy βββ∗ = [0.345, 0.938]T achieves the optimal
equilibrium policy loss, and as expected it places considerable weight on x2. When βββ = βββ∗, we observe that
69% of agents who score above s(βββ) are naturals (Figure 3, right plot).

We compare the solutions obtained by running stochastic gradient descent with τ̂PE and τ̂ME. We optimize
βββ via vanilla stochastic gradient descent on θ, the polar-coordinate representation of βββ. We initialize gradient
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Method |Leq(β̂ββ)− Leq(βββ
∗)| |θ̂ − θ∗|

None (Set β̂ββ = β̃ββ) 0.19 ± 0.04 1.24 ± 0.08
GD with τ̂ME 0.08 ± 0.02 0.68 ± 0.13
GD with τ̂PE 0.00 ± 0.00 0.03 ± 0.02

Table 1: Over 10 random trials, we observe that gradient descent with the policy effect converges to the
optimal θ∗ (or in Cartesian coordinates, βββ∗). However, gradient descent with the model effect does not
converge to θ∗.
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Figure 4: We plot the equilibrium policy loss obtained from iterates of gradient descent with τ̂ME and τ̂PE

in our high-dimensional simulation (d = 10) and find that gradient descent with τ̂PE converges to a solution
that obtains lower equilibrium policy loss.

descent with β̃ββ (θ = 0). We report the equilibrium policy loss obtained by the learned parameters β̂ββ after
100 iterations of gradient descent. We assume that n = 1000000 agents are observed by the decision
maker at each iteration. We report the absolute difference between the equilibrium policy loss of the optimal
solution and the learned solution. In addition, we report the absolute difference between the polar coordinate
representations of the solutions |θ̂ − θ∗|, where θ̂ = arctan(β̂ββ1/β̂ββ0) and θ∗ = arctan(βββ∗

1/βββ
∗
0).

Across 10 random trials (where the randomness is over the sampled agent types and sampled agents) ,
we observe that gradient descent using the policy effect τ̂PE from Corollary 16 converges to θ∗ (Table 1).
Meanwhile, gradient descent with the model effect τ̂ME from Theorem 14 converges to a policy that attains
suboptimal equilibrium policy loss (Table 1). This demonstrates the value of accounting for the equilibrium
effect. Nevertheless, we note that τ̂ME is a relatively strong baseline because it accounts for agents’ strategic
behavior with knowledge of the selection criteria βββ’s impact on the decision maker’s loss. In absence of
capacity constraints, gradient descent with τ̂ME will enable learning of the optimal solution.

6.2 High-Dimensional Simulation

For d = 10, in this simulation we consider d-dimensional linear policies

βββ ∈ B, where B = {y ∈ Rd | ||y||2 = 1}.

We suppose the capacity constraint only allows the decision maker to accept 30% of the agent population.
To define the decision maker’s loss, suppose that ℓ is specified as follows

ℓ(π, ν) =

{
−ηηη1 π = 1

0 π = 0
.

The decision maker’s equilibrium policy loss Leq(βββ) is given by Definition 1.
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Method Equilibrium Policy Loss L̂eq(β̂ββ)
GD with τ̂ME -1.81 ± 0.14
GD with τ̂PE -2.05 ± 0.14

Table 2: Across 10 random trials, we find that GD with τ̂PE attains lower equilibrium policy loss than GD
with τ̂ME in our high-dimensional simulation (d = 10). A one-sided paired t-test, where we compare the final
loss incurred of the policy learned via GD with τ̂PE and GD with τ̂ME with the same random seed, yields a
p-value of 1e-5.

We suppose that
ηηη ∈ [0, 10]d, γγγ ∈ [0.05, 5]d, x ∈ [0, 10]d.

The variance of the noise distribution σ2 is set to ensure the continuous differentiability property of the
quantile mapping of the score distribution; we set σ = 1.10. Agents optimize the quadratic utility function
in (2.5), and the entry γγγi quantifies the cost of gaming ηηηi. We consider a population with 10 agent types.
For each agent type (ηηη,γγγ), we have that

ηηηi ∼ Uniform[3, 8], γγγi ∼ Uniform[0.05, 5], i ∈ {1, . . . d}.

We optimize βββ via projected stochastic gradient descent, initialized with

β̂ββ = [
1√
d
,
1√
d
, . . .

1√
d
]T .

We compare the equilibrium policy loss of the gradient descent iterates obtained by using τ̂ME as the gradient
to those obtained by using τ̂PE as the gradient (Figure 4). We assume that n = 1000000 agents are observed
by the decision maker at each iteration. Across 10 random trials (where the randomness is over the sampled
agent types and the sampled agents), we observe that gradient descent with τ̂PE finds a solution with lower
equilibrium policy loss than gradient descent with τ̂ME (Table 2). Again, we note that GD with τ̂ME is
a relatively strong baseline because it captures how the decision maker’s loss changes with respect to the
selection criteria in a way that accounts for agents’ strategic behavior.
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A Experiment Details

A.1 Toy Experiment

We use a learning rate of a = 1 in GD with τ̂PE. We use a learning rate of a = 0.25 in GD with τ̂ME. We
use a perturbation size b = 0.025 for βββ and b = 0.2 for s.

A.2 High-Dimensional Experiment

We use a learning rate of a = 1 in GD with τ̂ME and in GD with τ̂PE. We use a perturbation size b = 0.025
for βββ and b = 0.2 for s.

B Standard Results

Lemma 17. Let X ⊂ Rd is a convex set. Let f : X → R be a strictly concave function. If f has a global
maximizer, then the maximizer is unique (Boyd et al. [2004]).

Lemma 18. Let f : X → R, where X ⊂ Rd is a convex set, be a twice-differentiable function. If f is a
strictly concave function and x∗ is in the interior of X , then x∗ is the unique global maximizer of f on X if
and only if ∇f(x∗) = 0 (Boyd et al. [2004]).

Theorem 19 (Implicit Function Theorem). Suppose f : Rn×Rm → Rm is continuously differentiable in an
open set containing (x0,y0) and f(x0,y0) = 0. Let M be the m×m matrix

Dn+jf
i(x,y) 1 ≤ i, j ≤ m.

If det(M) ̸= 0, then there is an open set X ⊂ Rn containing x0 and an open set Y ⊂ Rm containing y0, with
the following property: for each x ∈ X there is a unique g(x) ∈ Y such that f(x,g(x)) = 0. The function g
is continuously differentiable.
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Theorem 20 (Sherman-Morrison Formula). Suppose A ∈ Rd×d is an invertible square matrix, u,v ∈ Rd.
Then A+ uvT is invertible iff 1 + vTA−1u ̸= 0. In this case,

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Lemma 21. Suppose A,B ∈ Rd×d are positive definite matrices. If A − B is positive semidefinite, then
B−1 −A−1 is positive semidefinite (Dhrymes [1978]).

Lemma 22. Let f : R→ R be a differentiable real function. The function f is a contraction with modulus
κ ∈ (0, 1) if and only if |f ′(x)| ≤ κ for all x ∈ R (Ortega [1990]).

Theorem 23 (Banach’s Fixed-Point Theorem). Let (X, d) be a non-empty complete metric space with a
contraction mapping T : X → X. Then T admits a unique fixed-point x∗ such that T (x∗) = x∗. Furthermore,
for any number x0 ∈ X, the sequence defined by xn = T (xn−1), n ≥ 1 converges to the unique fixed point x∗.

Theorem 24. Let X1, X2, . . . , Xn be i.i.d. random variables from a c.d.f. F . Let θp be the p-th quantile

of F and let θ̂p be the p-th quantile of Fn. Suppose F satisfies p < F (θp + ϵ) for any ϵ > 0. Then for every
ϵ > 0, then

P (|θ̂p − θp| > ϵ) ≤ 4e−2nM2
ϵ ,

where Mϵ = min{F (θp + ϵ)− p, p− F (θp − ϵ)} (Theorem 5.9, Shao [2003]).

Theorem 25 (Bernoulli’s Inequality). For every r ≥ 0 and x ≥ −1, (1 + x)r ≥ 1 + rx.

Lemma 26. If the wi i.i.d., Θ is compact, a(·, θ) is continuous at each θ ∈ Θ with probability one, and there
is d(w) with ||a(w, θ)|| ≤ d(w) for all θ ∈ Θ and E [d(w)] <∞, then E[a(w, θ)] is continuous and

sup
θ∈Θ

∣∣∣ 1
n

n∑
i=1

a(wi, θ)− E [a(w, θ)]
∣∣∣ p−→ 0

(Lemma 2.4, Newey and McFadden [1994]).

Lemma 27. Suppose Θ is compact and f(θ) is continuous. Then supθ∈Θ |f̂n(θ) − f(θ)| → 0 if and only if

f̂n(θ)
p−→ f(θ) for all θ ∈ Θ and {f̂n(θ)} is stochastically equicontinuous (Lemma 2.8, Newey and McFadden

[1994]).

Lemma 28. Suppose {Zn(t)} is a collection of stochastic processes indexed by t ∈ T . Suppose {Zn(t)} is
stochastically equicontinuous at t0 ∈ T . Let τn be a sequence of random elements of T known to satisfy

τn
p−→ t0. It follows that Zn(τn)− Zn(t0)

p−→ 0, (Pollard [2012]).

Lemma 29. Let fn : X → R where X ⊂ R is a compact set. Let {fn} be a sequence of continuous,
monotonic functions that converge pointwise to a continuous function f . Then fn → f uniformly (Buchanan
and Hildebrandt [1908]).

Lemma 30. Let fn : X → R where X ⊂ Rd is a compact set. Let {fn} be a sequence of continuous, concave
functions that converge pointwise to f . Furthermore, assume that f is continuous. Then fn → f uniformly
(Rockafellar [1970]).

Lemma 31. Let fn : X → R where X ⊂ R is a compact set. Let {fn} be a sequence of continuous functions
that converge uniformly to f . Suppose each fn has exactly one root xn ∈ X and f has exactly one root
x∗ ∈ X . Then xn → x∗. Proof in Appendix G.1.

Lemma 32. Let fn : X → R where X ⊂ Rd is a compact set. Let {fn} be a sequence of continuous functions
that converge uniformly to f . Suppose each fn has exactly one maximizer xn ∈ X and f has exactly one
maximizer x∗ ∈ X . Then xn → x∗. Proof in Appendix G.2.

Theorem 33. Let us assume the following:

1. K vanishes at infinity, and
∫∞
−∞ K2(x)dx <∞,
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2. hn → 0 as n→∞,

3. nhn →∞ as n→∞.

Let fn(x) be a kernel density estimate of the density function f with n samples, kernel K, and bandwidth

hn. Then fn(x)
p−→ f(x), as n→∞ (Parzen [1962]).

C Proofs of Agent Results

Lemma 34. Under Assumption 1, the expected utility (2.4) is twice continuously differentiable in x,βββ, s.
Proof in Appendix G.3.

Lemma 35. Under Assumption 1, if σ2 > 1
αν

√
2πe

, then ∇2
xEϵϵϵ [u(x;βββ, s, ν)] is negative definite. Proof in

Appendix G.4.

Lemma 36. Under Assumption 1, if σ2 > 1
αν

√
2πe

and x ∈ Int(X ), then x = x∗(βββ, s, ν) if and only if

∇xEϵϵϵ [u(x;βββ, s, ν)] = 0. Proof in Appendix G.5.

Lemma 37. Under Assumption 1, if σ2 > 1
αν

√
2πe

and x∗(βββ, s, ν) ∈ Int(X ), then

βββT∇sx
∗ = G′′(s− βββTx∗(s))βββTH−1βββ −

( (G′′(s− βββTx∗(s))βββTH−1βββ)2

1 +G′′(s− βββTx∗(s))βββTH−1βββ

)
, (C.1)

where ν = (ηηη,γγγ),x∗(s) := x∗(βββ, s, ν), and H := ∇2cν(x
∗(s)− ηηη;γγγ). Proof in Appendix G.6.

Lemma 38. Let H = ∇2cν(y) for some y ∈ X . Under Assumption 1, we have that H is positive definite,
H−1 is positive definite, and

sup
z∈B

zTH−1z ≤ 1

αν
. (C.2)

Proof in Appendix G.7.

Lemma 39. Under Assumptions 1, if σ2 > 1
αν

√
2πe

and x∗(βββ, s, ν) ∈ Int(X ), then the function h(s;βββ, ν) =

s− βββTx∗(βββ, s, ν) is strictly increasing in s. Proof in Appendix G.8.

Lemma 40. Let ν = (ηηη,γγγ). Consider ω(s;βββ, ν) = βββTx∗(βββ, s, ν). Under Assumption 1, if σ2 > 1
αν

√
2πe

and

x∗(βββ, s, ν) ∈ Int(X ),

lim
s→∞

ω(s;βββ, ν) = βββTηηη. (C.3)

lim
s→−∞

ω(s;βββ, ν) = βββTηηη. (C.4)

Proof in Appendix G.9.

Lemma 41. Let ν = (ηηη,γγγ). Consider ω(s;βββ, ν) = βββTx∗(βββ, s, ν). Under Assumption 1, if σ2 > 1
αν

√
2πe

and x∗(βββ, s, ν) ∈ Int(X ), then ω(s;βββ, ν) is maximized at a point s∗, ω(s) is increasing when s < s∗ and is
decreasing on s > s∗. Proof in Appendix G.10.

C.1 Proof of Lemma 1

We can apply Lemma 34 to show that the expected utility (2.4) is twice continuously differentiable in x,
and thus continuous in x. Since X is compact, the expected utility attains a maximum value on X because
a continuous function attains a maximum value on a compact set. Thus, there exists x ∈ X that maximizes
the expected utility.

From Lemma 35, ∇2
xEϵϵϵ [u(x;βββ, s, ν)] is negative definite everywhere. This implies that the expected

utility is strictly concave. Since X is a convex set and the expected utility is strictly concave, we can apply
Lemma 17 to conclude that the best response is the unique maximizer of the expected utility on X .
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C.2 Proof of Lemma 2

We use the following abbreviations for the expected utility and best response

Eϵϵϵ [u(x; s)] := Eϵϵϵ [u(x;βββ, s, ν)]

x∗(s) := x∗(βββ, s, ν),

where βββ, ν are fixed. We aim to show that if a best response x∗(s) ∈ Int(X ), then x∗ is continuously
differentiable in s. By Lemma 36, if a best response x∗(s) ∈ Int(X ), then it satisfies ∇xEϵϵϵ [u(x; s)] = 0. Our
goal is to apply the Implicit Function Theorem (Theorem 19) to show that x that satisfies ∇xEϵϵϵ [u(x; s)] = 0
can be written as a continuously differentiable function of s.

Now, we verify the conditions of the Implicit Function Theorem. The conditions include ∇xEϵϵϵ [u(x; s)]
is continuously differentiable in its arguments and that at the point (x0, s0) where the theorem is applied,
we have det(∇2

xEϵϵϵ [u(x0; s0)]) ̸= 0. The first condition follows from Lemma 34, which in fact states that
Eϵϵϵ [u(x; s)] is twice continuously differentiable in its arguments. For the second condition, we note that
∇2

xEϵϵϵ [u(x; s)] is always negative definite everywhere from Lemma 35.
As a result, the conditions of the Implicit Function Theorem are satisfied. Let (x0, s0) be any point that

that satisfies ∇xEϵϵϵ [u(x; s)] = 0. In an open neighborhood V ×W ⊂ Rd×R of (x0, s0), for each s ∈W there
is a unique g(s) ∈ V such that ∇xEϵϵϵ [u(g(s); s)] = 0 and g is a continuously differentiable function of s. If
g(s) ∈ Int(X ), then g(s) coincides with the unique best response x∗(s) by Lemma 36. This implies that for
x(s) ∈ Int(X ), then x∗ is continuously differentiable in s.

An analogous proof can be used to show that the best response x∗ is continuously differentiable in βββ.

C.3 Proof of Lemma 3

Without loss of generality, we fix βββ, ν. We abbreviate

x∗(s) := x∗(βββ, s, ν).

To show that βββTx∗(s) is a contraction, it is sufficient to show that |βββT∇sx
∗| < 1 (Lemma 22). We show this

result in two steps. First, we use Lemma 39 to show that βββT∇sx
∗ < 1. Second, we can use our assumption

that σ2 > 2
αν

√
2πe

to show βββT∇sx
∗ > −1

We first show that βββT∇sx
∗ < 1. Since we assume that σ2 > 2

αν

√
2πe

, we certainly have that σ2 > 1
αν

√
2πe

,

so we can apply Lemma 39. This gives us that h(s;βββ, ν) = s − βββTx∗(βββ, s, ν) is strictly increasing. We
can apply Lemma 2 to establish the differentiability of the best response, which consequently gives the
differentiability of h. Since h is also strictly increasing, we have that

dh

ds
= 1− βββT∇sx

∗(s) > 0.

This gives us that βββT∇sx
∗(s) < 1.

Now, we establish that βββT∇sx
∗ > −1. We use Lemma 37 to get an expression ((C.1)) for the βββT∇x∗

s.
We can simplify (C.1) as follows,

βββT∇sx = G′′(s− βββTx∗(s))βββTH−1βββ −
( (G′′(s− βββTx∗(s))βββTH−1βββ)2

1 +G′′(s− βββTx∗(s))βββTH−1βββ

)
(C.5)

=
G′′(s− βββTx∗(s))βββTH−1βββ

1 +G′′(s− βββTx∗(s))βββTH−1βββ
. (C.6)

We study the numerator of the term on the right side of (C.6).

G′′(s− βββTx∗(s))βββTH−1βββ ≥ inf
y
G′′(y) sup

z∈B
zTH−1z (C.7)

≥ (− 1

σ2
√
2πe

) · 1

αν
(C.8)

> −αν

2
· 1

αν
(C.9)

= −1

2
. (C.10)
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(C.7) follows from the observation that G′′(y) may take negative values while H−1 is positive definite
(Lemma 38). (C.8) holds because − 1

σ2
√
2πe
≤ G′′(y) ≤ 1

σ2
√
2πe

. (C.8) is an application of Lemma 38. In

(C.9), we use our assumption that σ2 > 2
αν

√
2πe

.

Finally, we have that

G′′(s− βββTx∗(s))βββTH−1βββ > −1

2
(C.11)

2G′′(s− βββTx∗(s))βββTH−1βββ > −1 (C.12)

G′′(s− βββTx∗(s))βββTH−1βββ > −1−G′′(s− βββTx∗(s))βββTH−1βββ. (C.13)

Since

1 +G′′(s− βββTx∗(s))βββTH−1βββ >
1

2
> 0,

we can divide both sides of (C.13) by 1 +G′′(s− βββTx∗(s))βββTH−1βββ to see that

G′′(s− βββTx∗(s))βββTH−1βββ

1 +G′′(s− βββTx∗(s))βββTH−1βββ
> −1. (C.14)

We realize that the term on the left side of (C.14) matches our expression for the the gradient of the
score of the best response from (C.6), so we conclude that

βββT∇sx
∗ > −1.

Thus, we have that |βββT∇sx
∗| < 1, so βββT∇sx

∗ is a contraction in s.

D Proofs of Mean-Field Results

We state technical lemmas that will be used in many of our results. The proofs of these lemmas can be
found in Appendix G.

Lemma 42. The distribution Pβββ,s is given by

Pβββ,s(r) =

∫
X×G

G(r − βββTx∗(βββ, s, ν))dF. (D.1)

Under Assumptions 1, 2, and 3, if σ2 > 1
α∗

√
2πe

, then Pβββ,s(r) is a well-defined function. Furthermore, it is

strictly increasing in r, continuously differentiable in βββ, s, r, and has a unique continuous inverse distribution
function. Proof in Appendix G.11.

Lemma 43. Fix βββ ∈ B. Suppose Assumptions 1, 2, and 3 hold. If σ2 > 1
α∗

√
2πe

, then
∂q(Pβββ,s)

∂s < 1. If

σ2 > 2
α∗

√
2πe

, then
∣∣∣∂q(Pβββ,s)

∂s

∣∣∣ < 1. Proof in Appendix G.12.

Lemma 44. Let βββ ∈ B. Let P be the distribution over βββT (ηηη + ϵϵϵ) where ν = (ηηη,γγγ) ∼ F and ϵϵϵ ∼ N(0, σ2Id).
Under Assumption 1, 2, 3, if σ2 > 1

α∗
√
2πe

, then

lim
s→∞

Pβββ,s = P,

lim
s→−∞

Pβββ,s = P,

lim
s→∞

q(Pβββ,s) = q(P ),

lim
s→−∞

q(Pβββ,s) = q(P ).

Proof in Appendix G.13.
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D.1 Proof of Theorem 4

Our main goal is show that Pβββ,s(s) is a continuous and strictly increasing function of s. A continuous and
strictly increasing function can intersect a horizontal line (e.g. y = q) in at most one point, so if a fixed
point of q(Pβββ,s) exists, then it must be unique.

From Lemma 42, Pβββ,s has a unique inverse. So, if there is a fixed point s, which means that s = q(Pβββ,s),
then the fixed point satisfies Pβββ,s(s) = q.

Applying (D.1) from Lemma 42, we have

Pβββ,s(s) =

∫
X×G

G(s− βββTx∗(βββ, s, ν))dF

=

∫
X×G

G(h(s;βββ, ν))dF,

where h(s;βββ, ν) = s− βββTx∗(βββ, s, ν).
The continuity of Pβββ,s(s) in s follows from the continuity of Pβββ,s(r) in (s, r) (Lemma 42).
We show that Pβββ,s(s) is strictly increasing in s. From Lemma 39, we have that h(s;βββ, ν) is strictly

increasing in s for any agent type (ν). Since G is a strictly increasing CDF, so we have that G(h(s;βββ, ν))
is also strictly increasing. Finally, the sum of strictly increasing functions is strictly increasing, which gives
that the integral is also a strictly increasing function of s.

Since Pβββ,s(s) is continuous and strictly increasing in s, there is at most one point where it can equal q.
Thus, if a fixed point of q(Pβββ,s) exists, then it is unique.

D.2 Proof of Lemma 5

To show that q(Pβββ,s) is continuously differentiable in s, we first show that q(Pβββ,s) can be expressed implicitly
as a solution to

h(s, r) = Pβββ,s(r)− q = 0, where r = q(Pβββ,s). (D.2)

Second, we verify that the Implicit Function Theorem (Theorem 19) can be applied to h(s, r) = 0, so that
r can be expressed as a continuously differentiable function of s. Since r = q(Pβββ,s), we can conclude that
q(Pβββ,s) is continuously differentiable in s.

For the first step, we aim to show that q(Pβββ,s) can be expressed by (D.2). By Lemma 42, we have
that Pβββ,s has a unique inverse distribution function. So, there exists a unique r such that r = q(Pβββ,s).
Equivalently, Pβββ,s(r) = q for r = q(Pβββ,s), which yields (D.2).

In the second step, we aim to apply Implicit Function Theorem to h(s, r) = 0 at any point (s0, r0) that
satisfies h(s, r) = 0 to show that r can be expressed as a continuously differentiable function of s. Since
r = q(Pβββ,s), this is sufficient for showing that q(Pβββ,s) is continuously differentiable function of s.

The conditions of the Implicit Function Theorem include that h(s, r) is continuously differentiable in its
arguments and that ∂h

∂r (s0, r0) ̸= 0. We verify that these conditions hold as follows. Both of these conditions
follow from Lemma 42, which gives that Pβββ,s(r) is continuously differentiable in (s, r) and strictly increasing
in r. We have that

∂h

∂r
=

∂Pβββ,s(r)

∂r
,

and
∂Pβββ,s(r)

∂r > 0. So, for any (s0, r0), we have that ∂h
∂r (s0, r0) ̸= 0.

As a result, the conditions of the Implicit Function Theorem are satisfied. Let (s0, r0) be any point that
satisfies h(s, r) = 0. In an open neighborhood V ×W ⊂ R × R of (s0, r0), for each s ∈ V there is a unique
g(s) ∈ W such that h(s,g(s)) = 0 and g is a continuously differentiable function of s. Since r = q(Pβββ,s)
satisfies h(s, r) = 0, we must have that q(Pβββ,s) is a continuously differentiable function of s.

An analogous proof can be used to show that q(Pβββ,s) is continuously differentiable in βββ.

D.3 Proof of Theorem 6

We aim to apply the Intermediate Value Theorem to the function g(s) = s−q(Pβββ,s) to show that q(Pβββ,s) has
at least one fixed point. We note that by Lemma 5 that g(s) is continuous. It remains to show that there
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exists sl such that g(sl) < 0 and there exists sh such that sh > sl and g(sh) > 0. Then, by the Intermediate
Value Theorem, there must be s ∈ [sl, sh] for which g(s) = 0, which gives that q(Pβββ,s) has at least one fixed
point.

First, by Lemma 44, we have that

lim
s→∞

q(Pβββ,s) = q(P )

lim
s→−∞

q(Pβββ,s) = q(P ).

So, for some s ≥ S1 where S1 <∞, we have that |q(Pβββ,s)− q(P )| < δ. Let sh = max(q(P ) + δ, S1). Then we
have for s ≥ sh,

g(s) = s− q(Pβββ,s)

> s− q(P )− δ

≥ q(P ) + δ − q(P )− δ

= 0.

Similarly, for some s ≤ S2 where S2 > −∞, we have that |q(Pβββ,s) − q(P )| < δ. Let sl = min(q(P ) − δ, S2).
Then we have for s ≤ sl,

g(s) = s− q(Pβββ,s)

< s− q(P ) + δ

≤ q(P )− δ − q(P ) + δ

= 0.

So, by the Intermediate Value Theorem there must be s ∈ [sl, sh] for which g(s) = 0, which gives that q(Pβββ,s)
has at least one fixed point.

D.4 Proof of Corollary 7

Since we assumed that q(Pβββ,s) is a contraction in s and q(Pβββ,s) : R→ R, then we can apply Banach’s Fixed
Point Theorem (Theorem 23) to conclude that the process in (3.1) converges to s∗, the unique fixed point
of q(Pβββ,s).

D.5 Proof of Corollary 8

If σ2 > 2
α∗

√
2πe

, we can apply the second part of Lemma 43 to conclude that |∂q(Pβββ,s)

∂s | < 1. By Lemma 22,

q(Pβββ,s) is a contraction in s. As a consequence of Theorem 7, we can conclude that fixed point iteration
(3.1) converges to s∗, the unique fixed point of q(Pβββ,s).

D.6 Proof of Corollary 9

First, we show that we can a define a function that maps a linear model βββ to the equilibrium threshold
s∗ induced by βββ. Second, we give an equation that implicitly expresses this function. We verify that this
equation satisfies the conditions of the Implicit Function Theorem at any point (βββ, s∗), where βββ is a linear
model and s∗ is equilibrium threshold induced by βββ, and apply the Implicit Function Theorem to arrive at
the desired result. To prove one of the conditions of the Implicit Function Theorem, we will use the first
part of Lemma 43.

Recall that for every βββ ∈ B, there exists a fixed point s∗ that satisfies q(Pβββ,s∗) = s∗ (Theorem 6), and
it is unique (Theorem 4). As a result, we can define a function s : B → R that maps βββ to the fixed point
induced by βββ.

Note that we can implicitly represent s(βββ) by s in the following equation

h(βββ, s) = s− q(Pβββ,s) = 0.
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We aim to apply the Implicit Function Theorem to h(βββ, s) at any point (βββ0, s) where h(βββ0, s0) = 0. We verify
that the conditions of the Implicit Function Theorem are satisfied–h(βββ, s) must be continuously differentiable

in its arguments and ∂h(βββ,s)
∂s (βββ0, s0) ̸= 0.

For the first condition, Lemma 5 gives us that q(Pβββ,s) is continuously differentiable in its arguments. As
a result, h(βββ, s) is also continuously differentiable in βββ, s.

For the second condition, we note that

∂h(βββ, s)

∂s
= 1−

∂q(Pβββ,s)

∂s
.

From Lemma 43, we have that
∂q(Pβββ,s)

∂s < 1, so ∂h(βββ,s)
∂s > 0. Thus, the conditions of the Implicit Function

Theorem are satisfied.
Let (βββ0, s0) be a point that yields h(βββ0, s0) = 0. In a open neighborhood V ×W ⊂ Rd × R of (βββ0, s0),

for every βββ ∈ V , there is a unique g(βββ) ∈ W such that h(βββ, g(βββ)) = 0 and g is a continuously differentiable
function of βββ. We note that such g(βββ) must correspond to the unique equilibrium threshold induced by βββ,
so s(βββ) = g(βββ). Thus, s(βββ) is a continuously differentiable function of βββ.

E Proofs of Finite Approximation Results

Lemma 45. Suppose the conditions of Theorem 11. Let {zt} be a sequence of random variables where

zt =

{
ϵg w.p. pn(ϵg)

Sk w.p.
1−pn(ϵg)

2k
, k ≥ 1,

where pn(ϵg) is the bound from Lemma 10 and

Sk =

√
1

2nD2
· log

( 2k+1

1− pn(ϵg)

)
. (E.1)

For any s ∈ R, zt stochastically dominates |q(Pn
βββ,s)− q(Pβββ,s)|. Proof in Appendix G.14.

Lemma 46. Suppose the conditions of Theorem 11 hold. Let {ŝtn}t≥0 be a stochastic process generated via
(4.1). Let {zt}t≥1 be a sequence of random variables where

zt =

{
ϵg w.p. pn(ϵg)

Sk w.p.
1−pn(ϵg)

2k
, k ≥ 1,

where pn(ϵg) is the bound from Lemma 10 and Sk is as defined in Lemma 45. Let κ be the Lipschitz constant

of q(Pβββ,s). Then
∑k

i=0 z
t−iκi + κk|ŝt−k

n − s∗| stochastically dominates |ŝtn − s∗|. Proof in Appendix G.15.

E.1 Proof of Lemma 10

We define notation that will be used in the rest of the proof. For agent type ν ∈ supp(F ), s∗ν to be the
threshold s ∈ R that maximizes its best response function (without noise) x(βββ, s, ν) . Let sL = infν∈supp(F ) s

∗
ν

and let sH = supν∈supp(F ) s
∗
ν . We also can define functions

f1(s) := Pβββ,s(q(Pβββ,s) + ϵ)− q

f2(s) := q − Pβββ,s(q(Pβββ,s)− ϵ).

We define
Mϵ = inf

s∈R
min{f1(s), f2(s)},
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and we aim to show that Mϵ > 0. We note that

Mϵ = min{ inf
s∈R

f1(s), inf
s∈R

f2(s)}.

We note that
inf
s∈R

f1(s) = min{ inf
s<sL

f1(s), inf
s>sH

f1(s), inf
s∈[sL,sH ]

f1(s)}.

The differentiability of Pβββ,s and q(Pβββ,s) in s is given by Lemma 42 and Lemma 5, respectively. Thus, we
can write that

df1
ds

= pβββ,s(q(Pβββ,s) + ϵ) ·
dq(Pβββ,s)

ds
.

By Lemma 41, the score of the best response βββTx∗(βββ, s, ν) for each agent ν is increasing on s ≤ sL and

decreasing on s ≥ sH . By Lemma 43,
∂q(Pβββ,s)

∂s is a convex combination of βββT∇sx. Thus,
∂q(Pβββ,s)

∂s is positive

for s < sL and negative on s > sH . This implies that df1
ds is positive for s < sL and negative on s > sH .

Thus, f1(s) is increasing on (−∞, sL) and f1(s) is decreasing on (sH ,∞). So,

inf
s<sL

f1(s) = lim
s→−∞

f1(s)

= lim
s→−∞

Pβββ,s(q(Pβββ,s) + ϵ)− q

= P (q(P ) + ϵ)− q,

where the last line follows from Lemma 44 and P is the distribution defined that lemma. Similarly, we can
show that

inf
s>sH

f1(s) = lim
s→∞

f1(s) = P (q(P ) + ϵ)− q.

Finally, because [sL, sH ] is a compact set, there is some s1 ∈ [sL, sH ] for which f1(s) achieves its infimum
on the interval. Thus,

inf
s∈R

f1(s) = min{P (q(P ) + ϵ)− q, Pβββ,s1(q(Pβββ,s1) + ϵ)− q}.

Thus, infs∈R f1(s) > 0.
Similarly, we can compute infs∈R f2(s). We note that

inf
s∈R

f2(s) = min{ inf
s<sL

f2(s), inf
s>sH

f2(s), inf
s∈[sL,sH ]

f2(s)}.

We can write that
df2
ds

= −pβββ,s(q(Pβββ,s)− ϵ) ·
dq(Pβββ,s)

ds
.

From this result, we can see that f2(s) is decreasing on (−∞, sL) and f2(s) is increasing on (sH ,∞). So,

inf
s<sL

f2(s) = lim
s→sL

f2(s)

= f2(sL)

inf
s>sH

f2(s) = lim
s→sH

f2(s)

= f2(sH).

In addition, because [sL, sH ] is a compact set, there is some s2 ∈ [sL, sH ] for which f2(s) achieves its infimum
on the interval. Thus,

inf
s∈R

f2(s) = min
{sL,sH ,s2}

f2(s),

so infs∈R f2(s) > 0. Thus, Mϵ > 0.
Now, we proceed to show the second component of the lemma. From Theorem 24, we have that

P (|q(Pβββ,s)− q(Pn
βββ,s)| < ϵ) ≥ 1− 4e−2nM2

ϵ,s ,

where Mϵ,s = min{f1(s), f2(s)}. We can obtain a bound that is uniform over s by realizing that Mϵ =
infs∈R min{f1(s), f2(s)} and Mϵ > 0. So, we have that

P (|q(Pβββ,s)− q(Pn
βββ,s)| < ϵ) ≥ 1− 4e−2nM2

ϵ .
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E.2 Proof of Theorem 11

Let {zt}t≥1 be a sequence of random variables where

zt =

{
ϵg w.p. pn(ϵg)

Sk w.p.
1−pn(ϵg)

2k
, k ≥ 1

,

where ϵg = ϵ(1−κ)
2 and pn(ϵg) is the bound from Lemma 10. We have that

|ŝtn − s∗| ⪯SD

t∑
i=0

zt−iκi + κt|ŝ0n − s∗| (E.2)

⪯SD

t∑
i=0

zt−iκi + κtS. (E.3)

(E.2) follows from Lemma 46. (E.3) follows from the definition of S.
We note that

t∑
i=0

ϵgκ
i <

∞∑
i=0

ϵgκ
i

=
ϵg

1− κ

=
ϵ(1− κ)

2
· 1

1− κ
.

=
ϵ

2
.

In addition, let t ≥
⌈
log( ϵ

2S )

log κ

⌉
. For such t, we have that

t ≥
log( ϵ

2S )

log κ
.

Rearranging the above inequality gives

κtS ≤ ϵ

2
.

As a result, we have that
t∑

i=0

ϵgκ
i + κtS <

ϵ

2
+

ϵ

2
= ϵ.

By (E.3) and the definition of stochastic dominance, we have that

P (|ŝtn − s∗| ≤ ϵ) ≥ P (

t∑
i=0

zt−iκi + κtS ≤ ϵ)

≥ P (zt−i = ϵg for i = 0 . . . t)

≥ (pn(ϵg))
t

If we have that

n ≥ 1

2M2
ϵg

log
(4t
δ

)
, (E.4)

then we can show that pn(ϵg) ≥ 1− δ
t . We can rearrange (E.4)

e
−2nM2

ϵg ≤ δ

4t
.

29



Rearranging again,

1− 4e
−2nM2

ϵg ≥ 1− δ

t
.

Thus, we have that

pn(ϵg) ≥ 1− δ

t
.

So, (pn(ϵg))
t ≥ (1− δ

t )
t. Applying Theorem 25 gives that (pn(ϵg))

t ≥ 1− δ. Therefore, we conclude that

if t ≥
⌈
log( ϵ

2S )

log κ

⌉
and n ≥ 1

2M2
ϵg

log
(

4t
δ

)
, then

P (|ŝtn − s∗| ≤ ϵ) ≥ 1− δ,

as desired.

E.3 Proof of Corollary 12

To show that ŝtnn
p−→ s∗, we must show that

lim
n→∞

P (|ŝtnn − s∗| > ϵ) = 0.

It is sufficient to show that for any δ > 0, there exists N such that for n ≥ N ,

P (|ŝtnn − s∗| > ϵ) ≤ δ.

As in the statement of Theorem 11, let S = |ŝ0n − s∗|. Let N1 ∈ N be the smallest value of n such that

tn ≥ ⌈
log( ϵ

2S )

log κ ⌉.
We have that tn ≺ exp(n). So, there exists N2 ∈ N such that for n ≥ N2,

tn ≤
δ

4
exp

(
2nM2

ϵg

)
.

Rearranging this equation, we have that for n ≥ N2,

exp(2nM2
ϵg ) ≥

4tn
δ

.

Taking log of both sides yields for n ≥ N2

2nM2
ϵg ≥ log(

4tn
δ

).

So, for n ≥ N2, we have that

n ≥ 1

2M2
ϵg

log(
4tn
δ

).

We can take N = max{N1, N2}. By Theorem 11, we have that for n ≥ N,P (|ŝtnn − s∗| > ϵ) < δ. Thus, we

have that ŝtnn
p−→ s∗.

F Proofs of Learning Results

We state technical lemmas that will be used in many of our learning results.

Lemma 47. Let βββ ∈ B. Let s∗ be the mean-field equilibrium threshold. Define a truncated stochastic fixed
point iteration process

ŝt+1
n =


q(Pn

βββ,ŝtn
) q(Pn

βββ,ŝtn
) ∈ S

−D q(Pn
βββ,ŝtn

) < −D
D q(Pn

βββ,ŝtn
) > D

. (F.1)

Under Assumptions 1, 2, 3, if σ2 > 2
α∗

√
2πe

, then for any sequence {tn} such that tn ↑ ∞ as n → ∞ and

tn ≺ exp(n), we have that ŝtnn
p−→ s∗.
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Lemma 48. Let π̃ and ℓ̃ be functions X × G × supp(G)× B × S × S → R.

π̃(ν,βββ, s, r) = π(x∗(βββ, s, ν) + ϵϵϵ;βββ, r).

ℓ̃(ν,βββ, s, r) = ℓ(π(x∗(βββ, s, ν) + ϵϵϵ;βββ, r)), ν),

k̃(ν, ϵ,βββ, s, r) = I
(r − βββT (x∗(βββ, s, ν) + ϵϵϵ)

h
∈
[
− 1

2
,
1

2

))
Let (ν, ϵϵϵ) represent the data w and (βββ, s, r) represent parameters θθθ. Suppose the conditions of Theorem 14
hold. With (ν, ϵϵϵ) i.i.d., ℓ̃, π̃, and k̃ satisfy the requirements on the function a(w;θθθ) from Lemma 26. Proof
in Appendix G.17.

Lemma 49. Let βββ ∈ B, s ∈ S, ζζζ ∈ {−1, 1}d, ζ ∈ {−1, 1}, and b > 0. Define T : (ν, cν ; b, ζζζ, ζ)→ (ν′b,ζζζ,ζ , cν′),
where ν = (ηηη,γγγ) ∈ X × G and cost function cν satisfies Assumption 1. Let

x1 := x∗(βββ + bζζζ, s+ bζ, ν)

r := (βββ + bζζζ)Tx1 − bζ.

Let ν′b,ζζζ,ζ = (ηηη′b,ζζζ,ζ , γγγ) and cost function cν′ defined as follows.

ηηη′b,ζζζ,ζ := ηηη + βββ · b · (ζζζTx1 − ζ) (F.2)

cν′(y) := cν(y)−G(s− r)βββTy. (F.3)

If ηηη,x1 ∈ Int(X ) and b sufficiently small, then ν′b,ζζζ,ζ ∈ X × G, cν′ is αν-strongly convex,

x∗(βββ, s, ν′b,ζζζ,ζ) = x1 + b · βββ(ζζζTx1 − ζ),

x∗(βββ, s, ν′b,ζζζ,ζ) ∈ Int(X ), and βββTx∗(βββ, s, ν′b,ζζζ,ζ) = r. In other words, when the agent with type and cost function
T (ν, cν) best responds to the unperturbed model βββ and threshold s, they obtain the same raw score (without
noise) as the agent with type and cost function (ν, cν) who responds to a perturbed model βββ+bζ and threshold
s+ bζ. Proof in Appendix G.18.

Lemma 50. Suppose the conditions of Theorem 14 hold. Fix βββ ∈ B, s ∈ S. For sufficiently small b, there
exists a distribution over agent types, F̃b and corresponding cost functions cν′ for each type ν′ ∼ F̃b such that
when agents with types ν′ ∼ F̃b and cost functions cν′ best respond to the unperturbed model βββ and threshold
s the induced score distribution is equal to Pβββ,s,b. Furthermore, the support of F̃b is contained in X ×G, each
cν′ satisfies Assumption 1, F̃b has a finite number of agent types, α∗(F̃b) = α∗(F ), and for any agent type
ν′ ∼ F̃b, we have x(βββ, s, ν′) ∈ Int(X ). Proof in Appendix G.19.

Lemma 51. Fix βββ ∈ B. Suppose the conditions of Theorem 14 hold. If b is sufficiently small, then q(Pβββ,s,b)
has a unique fixed point s(βββ, b). As b → 0, s(βββ, b) → s(βββ), where s(βββ) is the unique fixed point of q(Pβββ,s).
Proof in Appendix G.20.

Lemma 52. Fix βββ ∈ B. Let {tn} be a sequence such that tn ↑ ∞ as n → ∞. Under the conditions of
Theorem 14, if b sufficiently small,

ŝtnb,n
p−→ s(βββ, b), ŝtn+1

b,n

p−→ s(βββ, b)

where s(βββ, b) is the unique fixed point of q(Pβββ,s,b). Proof in Appendix G.21.

F.1 Proof of Lemma 13

Let ∆ℓ(ν) = ℓ(1, ν)− ℓ(0, ν). We have that
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Leq(βββ) =L(βββ, s(βββ), s(βββ))

=Eϵϵϵ,ν [ℓ(π(x(βββ, s(βββ), ν);βββ, s(βββ)), ν)]

=Eϵϵϵ,ν

[
ℓ(I(βββTx(βββ, s(βββ), ν) ≥ s(βββ)), ν)

]
=Eν

[
Eϵϵϵ|ν

[
ℓ(1, ν) · I(βββTx(βββ, s(βββ), ν) ≥ s(βββ))

]]
+ Eν

[
Eϵϵϵ|ν

[
ℓ(0, ν) · I(βββTx(βββ, s(βββ), ν) < s(βββ))

]]
=Eν

[
ℓ(1, ν)(1−G(s(βββ)− βββTx∗(βββ, s(βββ), ν))

]
+ Eν∼F

[
ℓ(0, ν)G(s(βββ)− βββTx∗(βββ, s(βββ), ν))

]
=Eν∼F

[
ℓ(1, ν)−∆ℓ(ν)G(s(βββ)− βββTx∗(βββ, s(βββ), ν))

]
.

Under the assumed conditions, we have that x∗ is continuously differentiable in its first and second arguments
by Lemma 2. We also have that s is continuously differentiable βββ by Corollary 9. Thus, Leq(βββ) continuously
differentiable in βββ.

F.2 Proof of Theorem 14

Let s(βββ) be the unique fixed point of q(Pβββ,s). We introduce the following quantities.

ℓ̃i(βββ, s, r) := ℓ(π(x∗(βββ, s, νi) + ϵϵϵi;βββ, r), νi)

ℓ̃n(βββ, s, r) :=
1

n

n∑
i=1

ℓ̃i(βββ, s, r).

L̃(βββ, s, r) := Eν,ϵϵϵ

[
ℓ̃i(βββ, s, r)

]
We note that

ℓℓℓi(βββ, s, r) = ℓ̃ℓℓi(βββ + bnζζζi, s+ bnζi, r + bnζi),

where ζζζi and ζi are the perturbations applied to agent i. When s = r = s(βββ), L̃(βββ, s, r) = Leq(βββ). Through

an identical argument as in the proof of Lemma 13, we can see that L̃(βββ, s, r) is continuously differentiable
in s and r.

The model effect estimator τ̂ tnME,n(βββ) is the regression coefficient obtained by running OLS of ℓℓℓ(βββ, ŝtnn , ŝtn+1
n )

on Z. The regression coefficient must have the following form.

τ̂ tnME,n(βββ) = (Sn
zz)

−1snzy, where Sn
zz :=

1

b2nn
ZTZ, snzy :=

1

b2nn
ZTℓℓℓ(βββ, ŝtnbn,n, ŝ

tn+1
bn,n

). (F.4)

In this proof, we establish convergence in probability of the two terms above separately. The bulk of the
proof is the first step, which entails showing that

snzy
p−→ ∂L

∂βββ
(βββ, s(βββ), s(βββ)).

Due to ℓℓℓ′s dependence on the stochastic processes {ŝtnbn,n} and {ŝ
tn+1
bn,n
}, the main workhorse of this result is

Lemma 28. To apply this lemma, we must establish stochastic equicontinuity for the collection of stochastic
processes {ℓ̃n(βββ, s, r)}. Second, through a straightforward application of the Weak Law of Large Numbers,
we show that

Szz
p−→ Id.

Finally, we use Slutsky’s Theorem to establish the convergence of the model effect estimator.
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We proceed with the first step of establishing convergence of snzy. We have that

snzy =
1

b2nn
ZTℓℓℓ(βββ, ŝtnbn,n, ŝ

tn+1
bn,n

)

=
1

b2nn

n∑
i=1

bnζζζiℓℓℓi(βββ, ŝ
tn
bnn

, ŝtn+1
bn,n

)

=
1

bn
· 1
n

n∑
i=1

ζζζiℓℓℓi(βββ, ŝ
tn
bn,n

, ŝtn+1
bn,n

).

We fix j and bn = b where b > 0 and is small enough to satisfy the hypothesis of Lemma 52. For each
ζζζ ∈ {−1, 1}d and ζ ∈ {−1, 1}, let

nζζζ,ζ =

n∑
i=1

I(ζζζi = ζζζ, ζi = ζ).

Let z(ζζζ) map a perturbation ζζζ ∈ {−1, 1}d to the identical vector ζζζ, except with j-th entry set to 0. So,
if the j-th entry of ζζζ is 1, then ζζζ = ej + z(ζζζ). If the j-th entry of ζζζ is -1, then ζζζ = −ej + z(ζζζ). So, we have
that

ℓℓℓi(βββ, ŝ
tn
b,n, ŝ

tn+1
b,n ) = ℓ̃i(βββ + bζζζi, ŝ

tn
n + bζi, ŝ

tn+1
b,n + bζi)

= ℓ̃i(βββ + bζζζi,jej + b · z(ζζζi), ŝtnn + bζi, ŝ
tn+1
b,n + bζi).

As a result, we have that

1

n

n∑
i=1

ζζζi,jℓℓℓi(βββ, ŝ
tn
b,n, ŝ

tn+1
b,n ) (F.5)

=
1

n

n∑
i=1

ζζζi,j · ℓ̃i(βββ + bζζζi,jej + b · z(ζζζi), ŝ
tn
b,n + bζi, ŝ

tn+1
b,n + bζi) (F.6)

=
∑

ζζζ∈{−1,1}d s.t. ζζζj=1
ζ∈{−1,1}

nζζζ,ζ

n

nζζζ,ζ∑
i=1

ℓ̃i(βββ + bej + b · z(ζζζ), ŝtnb,n + bζ, ŝtn+1
b,n + bζ) (F.7)

−
∑

ζζζ∈{−1,1}d s.t. ζζζj=−1
ζ∈{−1,1}

nζζζ,ζ

n

nζζζ,ζ∑
i=1

ℓ̃i(βββ − bej + b · z(ζζζ), ŝtnb,n + bζ, ŝtn+1
b,n + bζ) (F.8)

To establish convergence properties of each term in the double sum in (F.7) and (F.8), we must establish
stochastic equicontinuity of the collection of stochastic processes {ℓ̃n(βββ, s, r)} indexed by (s, r) ∈ S × S.
Because S×S compact and L̃(βββ, s, r) is continuous in s and r, we can show that {ℓ̃n(βββ, s, r)} is stochastically
equicontinuous by establishing that ℓ̃n(βββ, s, r) converges uniformly in probability (with respect to (s, r)) to
L̃(βββ, s, r) (Lemma 27). We will show that ℓ̃n(βββ, s, r) converges uniformly (with respect to (s, r)) in probability
to L̃(βββ, s, r) via Lemma 26.

By Lemma 48, we have that ℓ̃ satisfies the conditions of Lemma 26. Thus, we can apply Lemma 26
to establish uniform convergence in probability of ℓ̃n(βββ, s, r) with respect to (s, r). As a consequence, the
collection of stochastic processes {ℓ̃n(βββ, s, r)} is stochastically equicontinuous. In particular, ℓ̃n(βββ, s, r) is
stochastically equicontinuous at (s(βββ, b), s(βββ, b)), where s(βββ, b) is the unique fixed point of q(Pβββ,s,b) (see
Lemma 51). By Lemma 52, we have that

ŝtnb,n
p−→ s(βββ, b)

ŝtn+1
b,n

p−→ s(βββ, b).
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Now, we can apply Lemma 28 to establish convergence in probability for each term in the double sum of
(F.7), (F.8). As an example, for a perturbation ζζζ ∈ {−1, 1}d with j-th entry equal to 1 and arbitrary
ζ ∈ {−1, 1}, Lemma 28 gives that

ℓ̃nζζζ,ζ
(βββ + bej + b · z(ζζζ), ŝtnbn,n + bζ, ŝtn+1

b,n + bζ)
p−→ ℓ̃nζζζ,ζ

(βββ + bej + b · z(ζζζ), s(βββ, b) + bζ, s(βββ, b) + bζ),

and by the Weak Law of Large Numbers, we have that

ℓ̃nζζζ,ζ
(βββ + bej + b · z(ζζζ), s(βββ, b) + bζ, s(βββ, b) + bζ)

p−→ L̃(βββ + bej + b · z(ζζζ), s(βββ, b) + bζ, s(βββ, b) + bζ).

Analogous statements hold for the remaining terms in (F.7) and (F.8). Also,

nζζζ,ζ

n

p−→ 1

2d+1
, ζζζ ∈ {−1, 1}d, ζ ∈ {−1, 1}.

By Slutsky’s Theorem, when any j and b fixed, we have

snzy,j
p−→

∑
ζζζ∈{−1,1}d s.t. ζζζj=1

ζ∈{−1,1}

L̃(βββ + bej + b · z(ζζζ), s(βββ, b) + bζ, s(βββ, b) + bζ)

2d+1 · b
(F.9)

−
∑

ζζζ∈{−1,1}d s.t. ζζζj=−1
ζ∈{−1,1}

L̃(βββ − bej + b · z(ζζζ), s(βββ, b) + bζ, s(βββ, b) + bζ)

2d+1 · b
. (F.10)

Let Rb denote the expression on the right side of the above equation. If there is a sequence {bn} such that
bn → 0, then by Lemma 51, s(βββ, bn) → s(βββ), where s(βββ) is the unique fixed point of q(Pβββ,s). Furthermore,
by the continuity of L, we have that

Rbn →
∂L

∂βββj
(βββ, s(βββ), s(βββ)).

Using the definition of convergence in probability, we show that there exists such a sequence {bn}. From
(F.9) and (F.10), we have that for each ϵ, δ > 0 and b > 0 and sufficiently small, there exists n(ϵ, δ, b) such
that for n ≥ n(ϵ, δ, b)

P (|snzy,j −Rb| ≤ ϵ) ≥ 1− δ.

So, we can fix δ > 0. For k = 1, 2, . . . , let N(k) = n( 1k , δ,
1
k ). Then, we can define a sequence such that

bn = ϵn = 1
k for all N(k) ≤ n ≤ N(k + 1). So, we have that ϵn → 0 and bn → 0. Finally, this gives that

snzy,j
p−→ ∂L

∂βββj
(βββ, s(βββ), s(βββ)).

Considering all indices j,

snzy
p−→ ∂L

∂βββ
(βββ, s(βββ), s(βββ)).

It remains to establish convergence in probability for Sn
zz. We have that

Zn =
1

b2nn
ZTZ

=
1

b2nn

n∑
i=1

(bnζζζi)
T (bnζζζi).

=
1

n

n∑
i=1

ζζζTi ζζζi.
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We note that

Eζζζi∼Rd [ζζζi,jζζζi,k] =

{
1 if j = k

0 if j ̸= k

because ζζζi is a vector of independent Rademacher random variables. So, E
[
ζζζTi ζζζi

]
= Id. By the Weak Law

of Large Numbers, we have that

Sn
zz

p−→ Id.

Finally, we can use Slutsky’s Theorem to show that

τ̂ tnME,bn,n
(βββ) = (Sn

zz)
−1snzy

p−→ (Id)
−1 ∂L

∂βββ
(βββ, s(βββ), s(βββ)) =

∂L

∂βββ
(βββ, s(βββ), s(βββ)) = τME(βββ).

F.3 Proof of Theorem 15

Let s∗ = s(βββ). Let Γ̂n
ℓℓℓ,s, Γ̂

n
πππ,s, Γ̂

n
πππ,βββ be the regression coefficients defined in Definition 7. Let pnβββ,s,b(s) be the

density estimate defined in Definition 7. In this proof, we rely on the results on the following convergence
results for these estimators.

Corollary 53. Let {tn} be a sequence such that tn ↑ ∞ as n → ∞. Let Zs, ℓℓℓ, Γ̂
n
ℓ,s(βββ, s, r) be as defined in

Definition 7. Under the conditions of Theorem 14, there exists a sequence {bn} such that bn → 0 so that

Γ̂n
ℓ,s,ℓ,r(βββ, ŝ

tn
bn,n

, ŝtn+1
bn,n

)
p−→ ∂L

∂s
(βββ, s(βββ), s(βββ)) +

∂L

∂r
(βββ, s(βββ), s(βββ)). (F.11)

Proof in Appendix G.22.

Lemma 54. Let {tn} be a sequence such that tn ↑ ∞ as n → ∞. Let Zβββ ,πππ, Γ̂
n
π,βββ(βββ, s, r) be as defined in

Definition 7. Under the conditions of Theorem 14, there exists a sequence {bn} such that bn → 0 so that

Γ̂n
π,βββ(βββ, ŝ

tn
bn,n

, ŝtnbn,n)
p−→ ∂Π

∂βββ
(βββ, s(βββ); s(βββ)). (F.12)

Proof in Appendix G.23.

Corollary 55. Let {tn} be a sequence such that tn ↑ ∞ as n → ∞. Let Zs,πππ, Γ̂
n
π,s(βββ, s, r) be as defined in

Definition 7. Under the conditions of Theorem 14, there exists a sequence {bn} such that bn → 0 so that

Γ̂n
π,s(βββ, ŝ

tn
bn,n

, ŝtnbn,n)
p−→ ∂Π

∂s
(βββ, s(βββ); s(βββ)). (F.13)

Proof in Appendix G.24.

Lemma 56. Fix βββ ∈ B. Let {hn} be a sequence such that hn → 0 and nhn → ∞. Let pnβββ,s,b(r) denote a

kernel density estimate of pβββ,s,b(r) with kernel function k(z) = I(z ∈ [− 1
2 ,

1
2 ) and bandwidth hn. Let {tn} be

a sequence such that tn ↑ ∞ as n → ∞. Under the conditions of Theorem 14, there exists a sequence {bn}
such that bn → 0 so that

pn
βββ,ŝtnn ,bn

(ŝtnbn,n)
p−→ pβββ,s∗(s

∗), (F.14)

where s∗ is the unique fixed point of q(Pβββ,s). Proof in Appendix G.25.

Finally, we use the following lemma to show that we recover the equilibrium effect.

Lemma 57. Let Π(βββ, s; r) be defined as in (5.3). Under Assumptions 1, 2, and 3, if σ2 > 1
α∗

√
2πe

then

∂s

∂βββ
=

1

pβββ,s∗(s∗)− ∂Π
∂s (βββ, s

∗; s∗)
· ∂Π
∂βββ

(βββ, s∗; s∗), (F.15)

where s∗ = s(βββ), the unique fixed point induced by the model βββ. Proof in Appendix G.26.
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We proceed with the main proof. The equilibrium effect estimator in (5.7) consists of two terms. We see
that the convergence of the first term is immediately given by (F.11) above. It remains to show that the
second term converges in probability to ∂s

∂βββ (βββ). We have that

Γ̂n
π,βββ(βββ, ŝ

tn
n ; ŝtnbn,n)

pn
βββ,ŝtnbn,n,bn

(ŝtnbn,n)− Γ̂n
π,s(βββ, ŝ

tn
n ; ŝtnbn,n)

p−→ 1

pβββ,s∗(s∗)− ∂Π
∂s (βββ, s

∗; s∗)
· ∂Π
∂βββ

(βββ, s∗; s∗) (F.16)

=
∂s

∂βββ
(βββ). (F.17)

(F.16) follows by Slutsky’s Theorem given (F.13), (F.12), and (F.14). (F.17) follows from Lemma (57).
Combining (F.11) and (F.17) using Slutsky’s Theorem, yields

τ̂ tnEE,n(βββ) = Γ̂ℓ,s,ℓ,r(βββ, ŝ
tn
bn,n

, ŝtn+1
bn,n

) ·
Γ̂π,βββ(βββ, ŝ

tn
bn,n

; ŝtnn )

pn
βββ,ŝtnbn,n,bn

(ŝtnbn,n)− Γ̂π,s(βββ, ŝ
tn
bn,n

; ŝtnbn,n)

p−→
(∂L
∂s

(βββ, s(βββ), s(βββ)) +
∂L

∂r
(βββ, s(βββ), s(βββ)

)
· ∂s
∂βββ

(βββ)

= τEE(βββ).

F.4 Proof of Corollary 16

This result follows from applying Slutsky’s Theorem to the results of Theorem 14 and Theorem 15.

G Proofs of Technical Results

G.1 Proof of Lemma 31

Since fn → f uniformly and fn’s are defined on a compact domain, then f must be continuous. By
assumption, f has only one zero x∗ in [a, b]. We can choose

ϵ = inf{|f(x)| | |x− x∗| > δ}.

By uniform convergence, there exists N such that for n ≥ N , supx∈X |fn(x) − f(x)| < ϵ
2 . By the triangle

inequality we have that

|f(x)| = |f(x)− fn(x) + fn(x)|
≤ |f(x)− fn(x)|+ |fn(x)|

|fn(x)| ≥ |f(x)| − |f(x)− fn(x)|.

For n ≥ N and x such that |x − x∗| > δ, we realize that |fn(x)| > ϵ
2 . So x cannot be a fixed point of fn.

Thus, if x is a fixed point of fn, then we have that |xn − x∗| < δ. This implies that xn → x∗.

G.2 Proof of Lemma 32

By uniform convergence, we have that for any ϵ > 0, for every x ∈ X , there is n ≥ N so that

f(x)− ϵ < fn(x) < f(x) + ϵ.

So, for all x ∈ X , we have that fn(x) < f(x) + ϵ < x∗ + ϵ. In addition, for all x ∈ X , we have that
f(x)− ϵ < xn. We realize that this implies that xn ≤ x+ ϵ and x∗− ϵ ≤ xn. Thus, we have that |xn−x| < ϵ.
So, we have that xn → x∗.
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G.3 Proof of Lemma 34

From Assumption 1, we have that cν is twice continuously differentiable. Since G is the Normal CDF, we
have that G is twice continuously differentiable. Since the composition and sum of twice continuously differ-
entiable functions is also twice continuously differentiable, we have that Eϵϵϵ [u(x;βββ, s, ν)] is twice continuously
differentiable in x,βββ, s.

G.4 Proof of Lemma 35

We abbreviate

Eϵϵϵ [u(x)] := Eϵϵϵ [u(x;βββ, s, ν)] .

From Lemma 34, we have that Eϵϵϵ [u(x)] is twice continuously differentiable in x, so

∇xEϵϵϵ [u(x)] = −∇cν(x− ηηη;γγγ) +G′(s− βββTx)βββT .

∇2
xEϵϵϵ [u(x)] = −∇2cν(x− ηηη;γγγ)− βββG′′(s− βββTx)βββT .

To show that ∇2
xEϵϵϵ [u(x)] is negative definite at any point (x, s), we can show that −∇2

xEϵϵϵ [u(x)] is
positive definite at any point (x, s). Let z ∈ Sd−1,

zT (−∇2
xEϵϵϵ [u(x)])z = zT [∇2cν(x− ηηη;γγγ) + βββG′′(s− βββTx)βββT ]z (G.1)

= zT∇2cν(x− ηηη;γγγ)z+G′′(s− βββTx) · zTββββββT z (G.2)

≥ inf
y

zT∇2cν(y)z+ inf
y
G′′(y) · zTββββββT z (G.3)

≥ αν + (− 1

σ2
√
2πe

) · zTββββββT z (G.4)

≥ αν + (−αν) · zTββββββT z (G.5)

> 0 (G.6)

We check the above inequality as follows. By Assumption 1, cν is αν-strongly convex and twice dif-
ferentiable. So, we can lower bound the first term in (G.2). (G.4) holds because G is N(0, σ2) and the
− 1

σ2
√
2πe
≤ G′′(y) ≤ 1

σ2
√
2πe

. The assumption that σ2 > 1
αν

√
2πe

yields (G.5). Finally, zTββββββT z = (zTβββ)2,

and the dot product of two unit vectors, βββ and z, must be between -1 and 1, so 0 ≤ zTββββββT z ≤ 1. Thus,
−∇2

xEϵϵϵ [u(x)] is positive definite.

G.5 Proof of Lemma 36

Without loss of generality, we fix βββ, s, ν. So, we abbreviate

Eϵϵϵ [u(x)] := Eϵϵϵ [u(x;βββ, s, ν)] .

We apply Lemma 18 to Eϵϵϵ [u(x)] to establish the claim. The conditions of Lemma 18 include twice-
differentiability in x and strict concavity in x of Eϵϵϵ [u(x)]. Twice-differentiability follows from Lemma 34 and
strict concavity follows from Lemma 35, which establishes that ∇2Eϵϵϵ [u(x)] is negative definite everywhere.
Since Eϵϵϵ [u(x)] satisfies the conditions of Lemma 18, we have that if x ∈ Int(X ), then x is the unique global
maximizer of Eϵϵϵ [u(x)] on X if and only if ∇xEϵϵϵ [u(x)] = 0. Under these conditions, if x ∈ Int(X ), then
x = x∗(βββ, s, ν) if and only if ∇xEϵϵϵ [u(x)] = 0, as desired.

G.6 Proof of Lemma 37

Without loss of generality, we fix βββ, ν. We use the following abbreviations

Eϵϵϵ [u(x; s)] := Eϵϵϵ [u(x;βββ, s, ν)]

x∗(s) := x∗(βββ, s, ν)

h(s) := h(s;βββ, ν).

We state an additional lemma that will be used in the proof of Lemma 37.
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Lemma 58. Let x ∈ X and ν ∈ X ×G, and s ∈ S. Let H = ∇2cν(x− ηηη;γγγ). Under Assumption 1, we have
that

(H+G′′(s− βββTx)ββββββT )−1 = H−1 − G′′(s− βββTx)ββββββTH−1

1 +G′′(s− βββTx)βββTH−1βββ
.

Proof in Appendix G.27.

Now, we proceed with the main proof. We compute ∇sx
∗ by using the implicit expression for x∗(s) given

by the first-order condition in Lemma 36. From Lemma 36, we note that x∗(s) must satisfy ∇xEϵϵϵ [u(x; s)] =
0. We have that

∇xEϵϵϵ [u(x; s)] = −∇cν(x− ηηη;γγγ) +G′(s− βββTx)βββT .

So, the best response x(s) satisfies

−∇cν(x∗(s)− ηηη;γγγ) +G′(s− βββTx∗(s))βββT = 0.

From Lemma 2, we have that the best response x∗(s) is continuously differentiable in s, so we can
differentiate the above equation with respect to s. This yields the following equation

(∇2cν(x
∗(s)− ηηη) +G′′(s− βββTx∗(s))ββββββT )∇sx

∗ = G′′(s− βββTx∗(s))βββ.

Let H = ∇2cν(x
∗(s)− ηηη). The above equation can be rewritten as

(H+G′′(s− βββTx∗(s))ββββββT )∇sx
∗ = G′′(s− βββTx∗(s))βββ.

From Lemma 58, we realize that the matrix term on the left side of the equation is invertible. We multiply
both sides of the equation by the inverse of the matrix to compute ∇sx.

∇sx
∗ = (H+G′′(s− βββTx∗(s))ββββββT )−1G′′(s− βββTx∗(s))βββ.

We can substitute the expression for (H + G′′(s − βββTx∗(s))ββββββT )−1 from Lemma 58 into the above
equation.

∇sx
∗ =

(
H−1 − G′′(s− βββTx∗(s))H−1ββββββTH−1

1 +G′′(s− βββTx∗(s))βββTH−1βββ

)
G′′(s− βββTx∗(s))βββ.

This gives us that

βββT∇sx
∗ = βββT

(
H−1 − G′′(s− βββTx∗(s))H−1ββββββTH−1

1 +G′′(s− βββTx∗(s))βββTH−1βββ

)
G′′(s− βββTx∗(s))βββ (G.7)

= G′′(s− βββTx∗(s))βββTH−1βββ −
( (G′′(s− βββTx∗(s))βββTH−1βββ)2

1 +G′′(s− βββTx∗(s))βββTH−1βββ

)
, (G.8)

as desired.

G.7 Proof of Lemma 38

Since cν is αν-strongly convex (with αν > 0) and twice differentiable, we can see that for z ∈ Rd,

zT∇2cν(y)z ≥ αν |z|2 > 0

So, H = ∇2cν(y) is positive definite. Since H is positive definite, it is invertible and its inverse H−1 is
also positive definite. Assumption 1 gives

H ⪰ ανI.

Since H and ανI are positive definite and H−ανI is positive semidefinite, Lemma 21 gives us that (ανI)
−1−

H−1 is positive semidefinite. As a result,
1

αν
I ⪰ H−1.
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We conclude that (C.2) holds because

sup
z∈B

zTH−1z ≤ sup
z∈B

1

αν
zT z

≤ 1

αν
.

The last line follows because B = Sd−1.

G.8 Proof of Lemma 39

Without loss of generality, we fix βββ, ν. We use the following abbreviations

x∗(s) := x∗(βββ, s, ν)

h(s) := h(s;βββ, ν).

First, we establish that h is differentiable and compute dh
ds as follows

dh

ds
= 1− βββT∇sx

∗. (G.9)

Second, we use the expression for βββT∇sx
∗ from Lemma 37 to show that under our conditions, βββT∇sx

∗ < 1.
Finally, using this fact along with (G.9), we conclude that h has a positive derivative, so it must be strictly
increasing.

Now, we proceed with the main proof. First, we observe that h is differentiable in s because Lemma 2
gives that x∗(s) is continuously differentiable in s. Differentiating with respect to s yields (G.9).

Next, we use (C.1) to upper bound βββT∇sx
∗. We show that the second term on the right side of (C.1) is

nonnegative. Let N and D be the numerator and denominator of the term, respectively. In particular,

N := (G′′(s− βββTx∗(s))βββTH−1βββ)2

D := 1 +G′′(s− βββTx∗(s))βββTH−1βββ

Clearly, we must have N ≥ 0 because it consists of a squared term. We show that D > 0, as well.

D = 1 +G′′(s− βββTx∗(s))βββTH−1βββ (G.10)

≥ 1 + inf
y
G′′(y) sup

z∈B
zTH−1z (G.11)

≥ 1 + (− 1

σ2
√
2πe

) · 1

αν
(G.12)

> 1 + (−αν) ·
1

αν
(G.13)

> 0 (G.14)

(G.11) follows from the observation that H−1 is positive definite (Lemma 38), so βββTH−1βββ > 0, while
G′′(y) may take negative values. In (G.12), we apply Lemma 38 and we note thatG isN(0, σ2), so − 1

σ2
√
2πe
≤

G′′(y) ≤ 1
σ2

√
2πe

. In (G.13), we use the condition that σ2 > 1
αν

√
2πe

.

Since D > 0 and N ≥ 0, we have that the second term on the right side of (C.1) is nonnegative. As a
result, we can upper bound βββT∇sx

∗ as follows
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βββT∇sx
∗ = G′′(s− βββTx∗(s))βββTH−1βββ − (G′′(s− βββTx∗(s))βββTH−1βββ)2

1 +G′′(s− βββTx∗(s))βββTH−1βββ

≤ G′′(s− βββTx∗(s))βββTH−1βββ

≤ sup
z∈B

zTH−1z · sup
y

G′′(y)

≤ sup
z∈B

zTH−1z · 1

σ2
√
2πe

<
1

αν
· αν

< 1.

We can apply βββT∇sx
∗ < 1 to (G.9) to find that

dh

ds
= 1− βββ∇sx

∗ > 0.

Thus, h has a positive derivative, so it must be strictly increasing.

G.9 Proof of Lemma 40

Define ū(x;βββ, ν) = lims→∞ Eϵϵϵ [u(x;βββ, s, ν)] . Note that

ū(x;βββ, ν) = −cν(x− ηηη;γγγ) + 1.

We realize that
argmax

x∈X
ū(x;βββ, ν) = ηηη.

To show that (C.3) holds, we establish that Eϵϵϵ [u(x;βββ, s, ν)]→ ū(x;βββ, ν) uniformly in x as s→∞. Then,
we show that the maximizer of Eϵϵϵ [u(x;βββ, s, ν)] must converge to the maximizer of ū(x;βββ, ν) as s → ∞,
which gives the desired result.

First, we verify the conditions of Lemma 30 to establish the uniform convergence of Eϵϵϵ [u(x;βββ, s, ν)]. For
every s, we have that Eϵϵϵ [u(x;βββ, s, ν)] is continuous (Lemma 34). In addition, for every s, Lemma 35 gives
that the expected utility’s second derivative is negative definite, which implies that it is strictly concave.
Also, ū(x;βββ, ν) is continuous and concave. We note that Eϵϵϵ [u(x;βββ, s, ν)] → ū(x;βββ, ν) pointwise in x as
s→∞. Thus, Lemma 30 implies that Eϵϵϵ [u(x;βββ, s, ν)]→ ū(x;βββ, ν) converges uniformly in x as s→∞.

Second, we verify the conditions of Lemma 32 to show that

lim
s→∞

x∗(βββ, s, ν)→ ηηη (G.15)

We note that Eϵϵϵ [u(x;βββ, s, ν)] has a unique maximizer x∗(βββ, s, ν) for every s (Lemma 1), and ū(x;βββ, ν) is
uniquely maximized at ηηη. As shown in the previous part, Eϵϵϵ [u(x;βββ, s, ν)] converges uniformly in x as s→∞.
So, we can apply Lemma 32 to conclude that (G.15). This implies (C.3). An identical argument implies
(C.4).

G.10 Proof of Lemma 41

We will use the following lemma in this proof.

Lemma 59. Consider ω(s;βββ, ν) = βββTx∗(βββ, s, ν). Under Assumption 1, if σ2 > 1
αν

√
2πe

and x∗(βββ, s, ν) ∈
Int(X ), ω(s;βββ, ν) has a unique fixed point. Proof in Appendix G.28.
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By Lemma 59, ω(s;βββ, ν) has a unique fixed point. Let the unique fixed point be s∗. We show that
∇sω(s

∗) = 0 by an application of Lemma 37. Let H = ∇2c(x∗(s∗)− η;γγγ).

∇sω(s
∗) = βββT∇sx

∗(s∗)

= G′′(s∗ − βββTx∗(s∗))βββTH−1βββ −
( (G′′(s∗ − βββTx∗(s∗))βββTH−1βββ)2

1 +G′′(s∗ − βββTx∗(s∗))βββTH−1βββ

)
= G′′(0) · (βββTH−1βββ)−

( (G′′(0)βββTH−1βββ)2

1 + (G′′(0))βββTH−1βββ

)
= 0.

The last line follows from the fact that G is N(0, σ2), so G′′(0) = 0. Thus, we have that ∇sω(s
∗) = 0.

When s < s∗, we have that h(s;βββ, ν) < h(s∗;βββ, ν) because by Lemma 39, h(s;βββ, ν) is strictly increasing
in s. Since h(s∗;βββ, ν) = 0, this implies that h(s;βββ, ν) < 0. Thus, we have that

∇sω(s) = βββT∇sx
∗(s)

= G′′(h(s))βββTH−1βββ −
( (G′′(h(s))βββTH−1βββ)2

1 +G′′(h(s))βββTH−1βββ

)
=

G′′(h(s))βββTH−1βββ

1 +G′′(h(s))βββTH−1βββ

> 0.

The last line follows because G′′(h(s)) > 0 when h(s) < 0 because G is N(0, σ2). Thus, ω(s) is increasing
when s < s∗.

When s > s∗, we have that h(s∗;βββ, ν) < h(s;βββ, ν), again because h is strictly increasing. This implies
that h(s;βββ, ν) > 0. So, when s > s∗, G′′(h(s)) < 0. Meanwhile,

1 +G′′(h(s))βββTH−1βββ ≥ 1 + inf
y
G′′(y) · sup

z∈B
zTHz

≥ 1 + (− 1

σ2
√
2πe

) · 1

αν

≥ 1 + (−αν) ·
1

αν

> 0.

This means that for s > s∗, we have that ∇sω(s) < 0. So, ω(s) is decreasing when s > s∗.
Since ω(s) is increasing when s < s∗ and is decreasing when s > s∗, then ω(s) is maximized when s = s∗.

G.11 Proof of Lemma 42

Recall that Pβββ,s denotes the distribution over the noisy scores, and the noisy score for an agent with type ν
is denoted by βββTx(βββ, s, ν) = βββTx∗(βββ, s, ν) + βββTϵϵϵ, where ϵϵϵ, ν are random variables. In addition, recall that
the noise is independent from the agents’ type (and as a result, best response). In particular, βββTϵϵϵ ∼ N(0, σ2)
because ϵϵϵ ∼ N(0, σ2Id). We have that

Pβββ,s(r) = P (βββTx∗(βββ, s, ν) + βββTϵϵϵ ≤ r) ν, ϵϵϵ are random variables

=

∫
X×G

P (βββTϵϵϵ ≤ r − βββTx(βββ, s, ν))dF ϵ is random variable

=

∫
X×G

G(r − βββTx∗(βββ, s, ν))dF.

Thus, Pβββ,s(r) has the form given in (D.1). Under our conditions, the best response for each agent type exists
and is unique via Lemma 1, so Pβββ,s(r) is a well-defined function.
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First, we establish that Pβββ,s is strictly increasing because we know that G is strictly increasing, and the
sum of strictly increasing functions is also strictly increasing.

Second, we establish that Pβββ,s is continuously differentiable in r because from we have that G is contin-
uously differentiable. Pβββ,s is continuously differentiable in βββ, s because G is continuously differentiable and
the best response mappings x∗(βββ, s, ν) are continuously differentiable (Lemma 2).

The combination of the above two properties is sufficient for showing that Pβββ,s has a continuous inverse
distribution function.

G.12 Proof of Lemma 43

First, we compute
∂q(Pβββ,s)

∂s via implicit differentiation. We note that our expression for
∂q(Pβββ,s)

∂s consists of
a convex combination of terms of the form βββT∇sx

∗(βββ, s, ν). Finally, we can bound each term in the convex

combination and bound
∂q(Pβββ,s)

∂s .
From Lemma 42, we have that Pβββ,s has an inverse distribution function, so q(Pβββ,s) is uniquely defined.

Thus, Pβββ,s(q(Pβββ,s)) = q implicitly defines q(Pβββ,s). Using the expression for Pβββ,s(r) from (D.1), we have∫
X×G

G(q(Pβββ,s)− βββTx∗(βββ, s, ν))dF = q (G.16)

From Lemma 5, we have that q(Pβββ,s) is differentiable in s. So, we can differentiate both sides of (G.16) with
respect to s.

∂

∂s

∫
X×G

G(q(Pβββ,s)− βββTx∗(βββ, s, ν))dF

=

∫
X×G

∂

∂s

(
G(q(Pβββ,s)− βββTx∗(βββ, s, ν))

)
dF

=

∫
X×G

G′(q(Pβββ,s)− βββTx∗(βββ, s, ν)) ·
(∂q(Pβββ,s)

∂s
− βββT∇sx

∗(βββ, s, ν)
)
dF

= 0.

Rearranging the last two lines to solve for
∂q(Pβββ,s)

∂s yields

∂q(Pβββ,s)

∂s
=

∫
X×G

βββT∇sx
∗(βββ, s, ν) ·

G′(q(Pβββ,s)− βββTx∗(βββ, s, ν))∫
X×G G′(q(Pβββ,s)− βββTx∗(βββ, s, ν))dF

dF.

We have that G has a strictly increasing CDF, so G′ > 0. As a result, we can define

w(βββ, s, ν) =
G′(q(Pβββ,s)− βββTx∗(βββ, s, ν))∫

X×G G′(q(Pβββ,s)− βββTx∗(βββ, s, ν))dF

where 0 ≤ w(βββ, s, ν) ≤ 1 and
∫
w(βββ, s, ν)dF = 1.As a result,

∂q(Pβββ,s)

∂s is a convex combination of βββT∇sx(βββ, s, ν)
terms:

∂q(Pβββ,s)

∂s
=

∫
X×G

βββT∇sx(βββ, s, ν) · w(βββ, s, ν)dF.

We can upper bound each term βββT∇sx
∗(βββ, s, ν). When σ2 > 1

α∗
√
2πe

Lemma 39 gives us that for any

agent type ν ∈ supp(F ), the function h(s;βββ, ν) = s − βββTx∗(βββ, s, ν) is strictly increasing. Since h(s;βββ, ν) is
strictly increasing and differentiable, we have that

dh

ds
= 1− βββT∇sx

∗(βββ, s, ν) > 0.
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As a result, each term satisfies βββTx∗(βββ, s, ν) < 1. Since
∂q(Pβββ,s)

∂s is a convex combination of such terms, we

also have that
∂q(Pβββ,s)

∂s < 1.
When σ2 > 2

α∗
√
2πe

, Lemma 3 gives us that for any agent type ν ∈ supp(F ), the function βββTx∗(βββ, s, ν)

is a contraction in s, so |βββT∇sx
∗| < 1. As a result, since

∂q(Pβββ,s)

∂s is a convex combination of such terms

βββT∇sx
∗, then |∂q(Pβββ,s)

∂s | < 1.

G.13 Proof of Lemma 44

The cdf of P must be

P (r) =

∫
X×G

G(r − βββTηηη)dF. (G.17)

We have that

lim
s→∞

Pβββ,s(r) = lim
s→∞

∫
X×G

G(r − βββTx∗(βββ, s, ν))dF

=

∫
X×G

G(r − βββTηηη)dF

= P (r).

The first line follows from the definition of Pβββ,s from (D.1). The second line follows from Lemma 40. The
third line follows from (G.17). An identical proof can be used to show that

lim
s→−∞

Pβββ,s(r) = P (r).

Since Pβββ,s(r)→ P (r) pointwise in r, Pβββ,s are continuous and invertible and have continuous inverses (Lemma
42), and P is continuous, invertible, and has a continuous inverse, then we also have that

lim
s→∞

q(Pβββ,s) = q(P ), lim
s→−∞

q(Pβββ,s) = q(P ).

G.14 Proof of Lemma 45

First, we verify that zt is a valid random variable. We note that

P (zt = ϵg) +

∞∑
k=1

P (zt = Sk) = pn(ϵg) +

∞∑
k=1

(1− pn(ϵg)

2k

= pn(ϵg) +
1

1− 1
2

· 1− pn(ϵg))

2

= pn(ϵg) + (1− pn(ϵg))

= 1.

Now, we show that zt stochastically dominates |q(Pn
βββ,s)− q(Pβββ,s))|. So, for b ∈ R, we show that

P (|q(Pn
βββ,s)− q(Pβββ,s))| ≥ b) ≤ P (zt ≥ b), (G.18)

which is equivalent to the condition that zt stochastically dominates |q(Pn
βββ,s)− q(Pβββ,s)|.

From Lemma 10 we realize that for b ∈ R,

P (|q(Pn
βββ,s)− q(Pβββ,s))| ≥ b) ≤ 1− pn(b).

In addition, we have that

P (zt ≥ b) =


1 if b ≤ ϵg

1− pn(ϵg) if ϵg < b ≤ S1
1−pn(ϵg)

2k−1 if Sk−1 < b ≤ Sk, k ≥ 2.
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We show that (G.18) holds for the three cases 1) b ≤ ϵg, 2) ϵg < b ≤ S1, and 3) Sk−1 < b ≤ Sk for k ≥ 2.
When b ≤ ϵg, we have that

P (|q(Pn
βββ,s)− q(Pβββ,s))| ≥ b) ≤ 1− pn(b) ≤ 1 = P (zt ≥ b).

When ϵg < b ≤ S1, we have that pn(b) ≥ pn(ϵg) because pn(y) is increasing in y. So, we note that
1− pn(b) ≤ 1− pn(ϵg). This yields

P (|q(Pn
βββ,s)− q(Pβββ,s))| ≥ b) ≤ 1− pn(b) ≤ 1− pn(ϵg) = P (zt ≥ b).

To prove the result in the case where Sk−1 < b ≤ Sk, k ≥ 2, we first show that the definition of Sk in
(E.1) implies that

1− pn(Sk−1) =
1− pn(ϵg)

2k−1
, (G.19)

as follows. First, we consider the definition of Sk−1 below

Sk−1 =

√
− 1

2nD2
· log

(1− pn(ϵg)

2k

)
,

and we square both sides:

S2
k−1 = − 1

2nD2
· log

(1− pn(ϵg)

2k

)
.

Multiplying by −2nD2 and exponentiating both sides yields

exp(−2nD2S2
k−1) =

1− pn(ϵg)

2k
. (G.20)

Finally, we realize that (G.19) holds because

1− pn(Sk−1) = 2 exp(−2nD2S2
k−1)

= 2 · 1− pn(ϵg)

2k

=
1− pn(ϵg)

2k−1
,

and the second line follows by (G.20). Using (G.19), we observe that

P (|q(Pn
βββ,s)− q(Pβββ,s))| ≥ b) = 1− pn(b) ≤ 1− pn(Sk−1)

=
1− pn(ϵg)

2k−1

= P (zt ≥ Sk)

= P (zt ≥ b).

Thus, we conclude that (G.18) holds, yielding the desired result.

G.15 Proof of Lemma 46

We observe that

|ŝtn − s∗| = |ŝtn − q(Pβββ,ŝt−1
n

) + q(Pβββ,ŝt−1
n

)− s∗| (G.21)

= |q(Pn
βββ,ŝt−1

n
)− q(Pβββ,ŝt−1

n
) + q(Pβββ,ŝt−1

n
)− s∗| (G.22)

≤ |q(Pn
βββ,ŝt−1

n
)− q(Pβββ,ŝt−1

n
)|+ |q(Pβββ,ŝt−1

n
)− s∗| (G.23)

≤ |q(Pn
βββ,ŝt−1

n
)− q(Pβββ,ŝt−1

n
)|+ κ|ŝt−1

n − s∗| (G.24)

⪯SD zt + κ|ŝt−1
n − s∗|. (G.25)
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We have (G.22) because ŝtn is generated via (4.1). (G.24) holds because q(Pβββ,s) is a contraction mapping in
s and s∗ is the unique fixed point of q(Pβββ,s). (G.25) follows from Lemma 45.

Using recursion, we find that

|ŝtn − s∗| ⪯SD

k∑
i=0

zt−iκi + κk|ŝt−k
n − s∗|.

G.16 Proof of Lemma 47

Let {zt}t≥1 be a sequence of random variables where

zt =

{
ϵg w.p. pn(ϵg)

Sk w.p.
1−pn(ϵg)

2k
.
,

where ϵg = ϵ(1−κ)
2 and pn(ϵg) is the bound from Lemma 10.

Since s∗ ∈ S, we have that

|ŝtn − s∗| ≤ |q(Pn
βββ,ŝt−1

n
)− s∗| (G.26)

≤ |q(Pn
βββ,ŝt−1

A,n

)− q(Pβββ,ŝt−1
n

)|+ |q(Pβββ,ŝt−1
n

)− s∗| (G.27)

⪯SD zt + κ|ŝt−1
n − s∗|. (G.28)

where (G.26) holds because the truncation is contraction map to the equilibrium threshold s∗ and (G.28)
holds because q(Pβββ,s) is a contraction in s and s∗ is equilibrium threshold. So, as in Lemma 46, we can show
that

|ŝtn − s∗| ⪯SD

k∑
i=0

zt−iκi + κk|ŝt−k
n − s∗|.

Let S = |ŝn0 − s∗|. Thus, an identical argument as the proof of Theorem 11 can be used to show that if

t ≥
⌈ log( ϵ

2S )

log κ

⌉
, n ≥ 1

2M2
ϵg

log(
4t

δ
),

we have that
P (|ŝtn − s∗| ≥ ϵ) ≤ δ.

Using an identical argument as the proof of Corollary 12, it can be shown that for any sequence {tn} such
that tn ↑ ∞ as n→∞ and tn ≺ exp(n), ŝtnn

p−→ s∗, as desired.

G.17 Proof of Lemma 48

Let H be the joint distribution of ν and ϵϵϵ. We can use the following abbreviations

w := (ν, ϵϵϵ)

θθθ := (βββ, s, r)

π̃(w, θθθ) := π̃(ν, ϵϵϵ,βββ, s, r)

ℓ̃(w, θθθ) := ℓ̃(ν, ϵϵϵ,βββ, s, r)

k̃(w, θθθ) := k̃(ν, ϵϵϵ,βββ, s, r).

The conditions on a(w;θθθ) in Lemma 26 include that

1. θθθ ∈ Θ, where Θ is compact.

2. a(w;θθθ) is continuous with probability 1 for each θθθ ∈ Θ.
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3. |a(w;θθθ)| ≤ d(w) and Ew∼H [d(w)] .

First, for all of ℓ̃, π̃, k̃, we have that the parameter space B × S × S is compact.
Second, we can verify that for fixed parameters, ℓ̃, π̃, and k̃ are continuous with probability 1. By

Assumption 5, we have that each for π ∈ {0, 1}, ℓ(π, ν) is continuous, so the only discontinuity of ℓ̃ occurs at
the threshold when π flips from 0 to 1. Similarly, π̃ is an indicator function, so its only discontinuity occurs
at threshold. Thus, ℓ̃(·, θθθ) and π̃(·, θθθ) are discontinuous on the set

A = {(ν, ϵ) : βββTx(βββ, s, ν) = r}

but are otherwise continuous. The probability that (ν, ϵϵϵ) ∼ H satisfies the condition of set A is equal to
the probability that a score z ∼ Pβββ,s takes value exactly r. We note that a singleton subset {r} will have
measure 0, so the probability that a score takes value r is 0. Thus, A must also have measure 0. Since ℓ̃ and
π̃ are continuous except on a set of measure 0, ℓ̃ and π̃ are continuous with probability 1. We realize that k̃
is continuous except for on the following set

A′ = {(ν, ϵϵϵ) : βββTx(βββ, s, ν) = r +
h

2
} ∪ {(ν, ϵϵϵ) : βββTx(βββ, s, ν) = r − h

2
}.

The probability that (ν, ϵ) ∼ H satisfies the condition of set A′ is equal to the probability that a score
z ∼ Pβββ,s takes value exactly r+ h

2 or value r− h
2 . Since the sets {r+ h

2 } and {r−
h
2 } have measure zero and

a countable union of measure zero sets has measure zero, then A′ has measure zero. Thus, k̃ is continuous
with probability 1.

Third, we note that ℓ̃, π̃, and k̃ are dominated. For ℓ̃, Assumption 5 gives us that ℓ(π, ν) is bounded, so
any constant function d(ν) = c for c ≥ supν∈X×G,π∈{0,1} ℓ(ν, π) dominates ℓ̃. Since π̃ and k̃ are indicators,
they only takes values {0, 1}, so any constant function d(ν) = c where c > 1 satisfies the required condition.
Thus, ℓ̃, k̃, and π̃ satisfy the conditions of Lemma 26.

G.18 Proof of Lemma 49

In this proof, we first verify that the agent with type ν′b,ζζζ,ζ has ν′b,ζζζ,ζ ∈ X ×G and has a strongly-convex cost
function cν′ . Second, we verify the value of the best response for this agent and show that it lies in Int(X ).
Lastly, we show that this agent’s raw score (without noise) matches that of the agent with type ν under the
perturbed model.

By the following lemma, we realize that with ηηη′b,ζζζ,ζ as defined in (F.2), ν′b,ζζζ,ζ = (ηηη′b,ζζζ,ζ , γγγ) ∈ X × G is a
valid type as long as the perturbation magnitude b is sufficiently small.

Lemma 60. Let ζζζ ∈ {−1, 1}d and ζ ∈ {−1, 1} denote perturbations. Let b be the magnitude of the pertur-
bations. Let βββ ∈ B. If y ∈ Interior(X ) and x ∈ X , then for any b sufficiently small and

y′ = y + βββ · b · (ζζζTx− ζζζ),

we have that y′ ∈ Int(X ). Proof in Appendix G.29.

With the above lemma, we define b1 so that ηηη′b,ζζζ,ζ ∈ X for b < b1.
We verify that cν′ satisfies Assumption 1. We note that cν′ is twice continuously differentiable because it

is the sum of twice continuously differentiable functions. Second, we show that cν′ is strongly convex. Since
cν satisfies Assumption 1, then cν is αν−strongly convex for αν > 0 and twice continuously differentiable.
In addition, G′(s− r)βββTy is differentiable and convex in y. By the strong convexity of cν and the convexity
of G′(s− r)βββTy, we have that

cν′(y) =cν(y) +G′(s− r)βββTy

≥(cν(y0) +∇cν(y0)
T (y − y0) +

αν

2
||y − y0||22)

+ (G′(s− r)βββT (y0) +G′(s− r)βββT (y − y0))

=(cν(y0) +G′(s− r)βββT (y0)) + (∇cν(y0)
T +G′(s− r)βββT )(y − y0)) +

αν

2
||y − y0||22

=cν′(y0) +∇cν′(y0)
T (y − y0) +

αν

2
||y − y0||22.

46



So, cν′ is αν′ -strongly convex where αν′ = αν , satisfying Assumption 1.
Let

x2 = x1 + b · βββ(ζζζTx1 − ζ).

Note that by Lemma 60, for sufficiently small b, we have that x2 ∈ Int(X ). Suppose that x2 ∈ Int(X )
for b < b2. We will show two useful facts about x2 that will enable us to show that the best response of
the agent with type ν′b,ζζζ,ζ to the model βββ and threshold s is given by x2. For the first fact, we see that
x2 − ηηη′b,ζζζ,ζ = x1 − ηηη.

x2 − ηηη′b,ζζζ,ζ = βββ(bζζζTx1 − bζ) + x1 − ηηη′b,ζζζ,ζ

= βββ(bζζζTx1 − bζ) + x1 − ηηη − βββ · b · (ζζζTx1 − ζ)

= x1 − ηηη.

For the second fact, we have that βββTx2 = r.

βββTx2 = βββT
(
βββ(bζζζTx1 − bζ) + x1

)
(G.29)

= (βββTβββ) · (bζζζTx1 − bζ) + βββTx1 (G.30)

= (βββ + bζζζ)Tx1 − bζ (G.31)

= r. (G.32)

Now, we show that x2 = x∗(βββ, s, ν′b,ζζζ,ζ). Since Assumption 1 holds, by Lemma 36 it is sufficient to check
∇xEϵϵϵ [u(x2;βββ, s, ν

′
b)]] = 0 to verify that x2 is the best response:

∇xEϵϵϵ

[
u(x2;βββ, s, ν

′
b,ζζζ,ζ)]

]
= −∇cν′(x2 − ηηη′b,ζζζ,ζ) +G(s− βββTx2)βββ

T (G.33)

= −∇cν′(x1 − ηηη) +G(s− r)βββT (G.34)

= −∇cν(x1 − ηηη) +G(s− r)bζζζT +G(s− r)βββT . (G.35)

To further simplify the above equation, we have that x1 = x∗(βββ + bζζζ, s + bζ, ν) and x1 ∈ Int(X ). By
Lemma 36, this implies that ∇xEϵϵϵ [u(x1;βββ + bζζζ, s+ bζ, ν)] = 0. This gives that

∇xEϵϵϵ [u(x1;βββ + bζζζ, s+ bζ, ν)] = −∇cν(x1 − ηηη) +G(s+ bζ − (βββ + bζ)Tx1)(βββ + bζζζ)T

= −∇cν(x1 − ηηη) +G(s− r)(βββ + bζζζ)T

= 0.

So, we have that
∇cν(x1 − ηηη) = G(s− r)(βββ + bζζζ)T .

Substituting this result into (G.35) yields

∇xEϵϵϵ

[
u(x2;βββ, s, ν

′
b,ζζζ,ζ)]

]
= −∇cν(x1 − ηηη) +G(s− r)bζζζT +G(s− r)βββT

= −G(s− r)(βββ + bζ)T +G(s− r)bζζζT +G(s− r)βββT

= 0.

We note that if b < min(b1, b2), then we have that ηηη′b,ζζζ,ζ ,x2 ∈ Int(X ). Under such conditions, we conclude
that x2 = x∗(βββ, s, ν′b,ζζζ,ζ). The score obtained by the agent with type ν′b,ζζζ,ζ and cost function cν′ under the

model βββ and threshold s is βββTx2. As we showed earlier in (G.32), this quantity is equal to r. Thus, for
sufficiently small perturbations, the agent with type ν under perturbations obtains the same raw score as
the agent with type ν′b,ζζζ,ζ in the unperturbed setting.

G.19 Proof of Lemma 50

Note that by Assumption 2, F has finitely many types with positive probability. Let f be the probability
mass function of F , so f(ν) gives the probability of that an agent has type ν.
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We construct the probability mass function f̃b of the distribution F̃b. Let ν ∼ F and cν be its cost
function. Under Assumptions 3 and 4, we can compute T (ν, cν ; b, ζζζ, ζ), as defined in Lemma 49, for each
perturbation ζζζ ∼ {−1, 1} and ζ ∼ {−1, 1} and type ν ∼ F . Let

T (ν, cν ; b, ζζζ, ζ) = (ν′b,ζζζ,ζ , cν′).

We assign f̃b(ν
′
b,ζζζ,ζ) =

1
2d+1 f(ν). Since there are finitely many types that occur with positive probability

in F and finitely many perturbations (2d+1 possible perturbations), there exists b > 0 such that this trans-
formation is possible simultaneously for all types in the support of F and all perturbations. Note that this
is a valid probability mass function because

∑
ν∼supp(F ) f(ν) = 1, so∑

ν′
b,ζζζ,ζ

∈supp(F̃b)

f̃b(ν
′
b,ζζζ,ζ) =

∑
ν∼supp(F )

∑
ζζζ∈{−1,1}d

ζ∈{−1,1}

1

2d+1
f(ν) = 1.

In addition, note that the transformation yields

βββTx∗(βββ, s, ν′b,ζζζ,ζ) = (βββ + bζζζ)Tx∗(βββ + bζζζ, s+ bζ, ν)− bζ.

The transformation given in Lemma 49 also provides other desirable properties. For instance, ν′b,ζζζ,ζ ∈
X × G, which means that the support of F̃b is contained in X × G. The cost function of the cν′ satisfies
Assumption 1 with αν′ = αν , which means that α∗(F̃b) = α∗(F ). Lastly, for ν′b,ζζζ,ζ ∼ F̃b, the best responses
of the agents lie in Int(X ).

Additionally, we have that

Pβββ,s,b(r) =
1

2d+1

∑
ζζζ∈{−1,1}d

ζ∈{−1,1}

∫
G
(
r − (βββ + bζζζ)Tx∗(βββ + bζζζ, s+ bζ, ν)− bζ

)
dF

=
1

2d+1

∑
ζζζ∈{−1,1}d

ζ∈{−1,1}

∑
ν∈supp(F )

G
(
r − (βββ + bζζζ)Tx∗(βββ + bζζζ, s+ bζ, ν)− bζ

)
f(ν)

=
∑

ζζζ∈{−1,1}d

ζ∈{−1,1}

∑
ν∈supp(F )

G
(
r − (βββ + bζζζ)Tx∗(βββ + bζζζ, s+ bζ, ν)− bζ

)f(ν)
2d+1

=
∑

ζζζ∈{−1,1}d

ζ∈{−1,1}

∑
ν∈supp(F )

G
(
r − (βββ + bζζζ)Tx∗(βββ + bζζζ, s+ bζ, ν)− bζ

)
f̃b(ν

′
b,ζζζ,ζ)

=
∑

ν′
b,ζζζ,ζ

∈supp(F̃b)

G(r − βββTx∗(βββ, s, ν′b,ζζζ,ζ))f̃b(ν
′
b,ζζζ,ζ)

=

∫
G(r − βββTx∗(βββ, s, ν))dF̃b.

The final line matches the form of the score distribution’s CDF given in Lemma 42 assuming that the
agent types are distributed according to F̃b.

G.20 Proof of Lemma 51

We define the sequence of functions {hb(s)} where hb : S → S. Let hb(s) := s − q(Pβββ,s,b) and h(s) :=
s− q(Pβββ,s).

We aim to apply Lemma 31 to this sequence of functions. We realize that the requirements on h(s) are
given by our results from Section 3. Theorem 4 and Theorem 6 give us that h(s) has a unique root, which is
the unique fixed point of q(Pβββ,s) called s(βββ). Also, we note that hb(s) and h(s) are defined on the compact
set S. It remains to check that
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1. Each hb(s) is continuous,

2. Each hb(s) has a unique root, which is the fixed point of q(Pβββ,s,b) called s(βββ, b),

3. As b→ 0, hb(s)→ h(s) is uniformly.

To verify the first two properties from the above list, we apply the transformation provided in Lemma 50
to Pβββ,s,b. This transformation enables us to apply the results from Section 3 directly to expressions involving
Pβββ,s,b.

Since the transformation maintains all of our assumptions and

σ2 >
1

α∗(F )
√
2πe

=
1

α∗(F̃b)
√
2πe

,

we can apply Lemma 5 to see that q(Pβββ,s,b) is continuous in s. This gives the continuity of hb(s). In addition,
we can apply Theorem 4 and Theorem 6 to find that q(Pβββ,s,b) has a unique fixed point in S. We can call the
fixed point s(βββ, b), and s(βββ, b) is also the unique root of hb(s).

Finally, we must check the third point, which is uniform convergence of hb(s) to h(s). We aim to apply
Lemma 29. First, we note that the continuity of h(s) is given by Lemma 5. Second, we check that each
hb(s) is monotonically increasing. Under the transformation from Lemma 50, we can apply Lemma 43 to

observe that under our conditions,
∂q(Pβββ,s,b)

∂s < 1, so hb(s) is strictly increasing. Third, we show that hb(s)
converges pointwise to h(s) as follows.

To show hb(s) → h(s) pointwise, we show q(Pβββ,s,b) → q(Pβββ,s) pointwise. Note that by Lemma 42, Pβββ,s

is strictly increasing, so we can let a lower bound on its density be d for s ∈ S, i.e.

d = inf
r∈S

pβββ,s(r).

Then, we realize that

|q(Pβββ,s,b)− q(Pβββ,s)| ≤
1

d
· sup
r∈S
|Pβββ,s,b(r)− Pβββ,s(r)|.

The following lemma gives us the required uniform convergence in r.

Lemma 61. Under Assumptions 1, 2, 3, and 4, if σ2 > 1
α∗(F )

√
2πe

then Pβββ,s,b(r)→ Pβββ,s(r) uniformly in r

as b→ 0.Proof in Appendix G.30.

So, we have that q(Pβββ,s,b)→ q(Pβββ,s) pointwise in s. This implies hb(s)→ h(s) pointwise. Thus, we have
that hb(s) and h(s) satisfy the conditions of Lemma 29, which implies that hb(s)→ h(s) uniformly.

Thus, the conditions of Lemma 31 are satisfied, so we have that s(βββ, b)→ s(βββ) as b→ 0.

G.21 Proof of Lemma 52

For sufficiently small b, we can apply Lemma 50 to show that Pβββ,s,b is equal to the score distribution

generated when agents with type ν′b,ζζζ,ζ ∼ F̃b and cost functions cν′ best respond to a model βββ and threshold
s. The conditions assumed when types are distributed ν ∼ F and cost functions are cν also hold when
types are distributed ν′b,ζζζ,ζ ∼ F̃b and cost functions are cν′ . In particular, α∗(F̃b) = α∗(F ), so we have that

σ2 > 2
α∗(F̃b)·

√
2πe

.

As a result, the results from Section 3 and Section 4 can be used to study q(Pβββ,s,b) and the stochastic
fixed point iteration process given by (5.4). First, we have that σ2 > 2

α∗(F̃b)·
√
2πe

, so we have that q(Pβββ,s,b)

is a contraction in s by Corollary 8. Furthermore, the conditions of Lemma 47 are satisfied by the assumed
conditions, the results of Lemma 50, and the fact that q(Pβββ,s,b) is a contraction. So, we have that

ŝtnb,n
p−→ s(βββ, b),

where s(βββ, b) is the unique fixed point of q(Pβββ,s,b). In addition, since {tn} is a sequence such that tn ↑ ∞ as
n→∞ and tn ≺ exp(n), we certainly have that {tn + 1} is a sequence such that tn + 1 ↑ ∞ as n→∞ and
tn + 1 ≺ exp(n), so again by Lemma 47, we have that

ŝtn+1
b,n

p−→ s(βββ, b).
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G.22 Proof of Corollary 53

The proof of this result is analogous to Theorem 14.

G.23 Proof of Lemma 54

To simplify notation, we use the following abbreviations. Let s(βββ) be the unique fixed point of q(Pβββ,s).

π̃i(βββ, s, r) := π(x∗(βββ, s, νi) + ϵϵϵi;βββ, r)

π̃n(βββ, s, r) :=
1

n

n∑
i=1

π̃i(βββ, s, r).

Π̃(βββ, s, r) := Eν,ϵϵϵ [π̃i(βββ, s, r)]

We note that π̃i(βββ, s, r) = πi(βββ + bnζζζi, s+ bnζi, r).
The regression coefficient obtained by running OLS of πππ(βββ, ŝtnbn,n, ŝ

tn
bn,n

) on Z is denoted by Γn
πππ,βββ(βββ, ŝ

tn
bn,n

, ŝtnbn,n).
The regression coefficient must have the following form.

Γn
πππ,βββ(βββ, ŝ

tn
bn,n

, ŝtnbn,n) = (Sn
zz)

−1snzy, where Sn
zz :=

1

b2nn
ZT
βββZβββ , snzy :=

1

b2nn
ZT
βββπππ. (G.36)

In this proof, we establish convergence in probability of the two terms above separately. The bulk of the
proof is the first step, which entails showing that

snzy
p−→ ∂Π

∂βββ
(βββ, s(βββ); s(βββ)).

Due to π̃ππ′s dependence on the stochastic process {ŝtnbn,n}, the main workhorse of this result is Lemma 28.
To apply this lemma, we must establish stochastic equicontinuity for the collection of stochastic processes
{π̃n(βββ, s, r)}. Second, through a straightforward application of the Weak Law of Large Numbers, we show
that

Sn
zz

p−→ Id.

Finally, we use Slutsky’s Theorem to establish the convergence the regression coefficient.
We proceed with the first step of establishing convergence of szy. We have that

snzy =
1

b2nn
ZTπππ(βββ, ŝtnbn,n, ŝ

tn
bn,n

)

=
1

b2nn

n∑
i=1

bnζζζiπππi(βββ, ŝ
tn
bn,n

, ŝtnbn,n)

=
1

bn
· 1
n

n∑
i=1

ζζζiπππi(βββ, ŝ
tn
bn,n

, ŝtnbn,n)

We fix j and bn = b where b > 0 and is small enough to satisfy the hypothesis of Lemma 52. For each
ζζζ ∈ {−1, 1}d and ζ ∈ {−1, 1}, let

nζζζ,ζ =

n∑
i=1

I(ζζζi = ζζζ, ζi = ζ).

Let z(ζζζ) map a perturbation ζζζ ∈ {−1, 1}d to the identical vector ζζζ, except with j-th entry set to 0. So, if
the j-th entry of ζζζ is 1, then ζζζ = ej + z(ζζζ). If the j-th entry of ζζζ is -1, then ζζζ = −ej + z(ζζζ). So, we have that

πππi(βββ, ŝ
tn
b,n, ŝ

tn
b,n) = π̃i(βββ + bζζζi, ŝ

tn
b,n + bζi, ŝ

tn
b,n)

= π̃i(βββ + bζζζi,jej + b · z(ζζζi), ŝtnb,n + bζi, ŝ
tn
b,n).
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As a result, we have that

1

n

n∑
i=1

ζζζi,jπππi(βββ, ŝ
tn
b,n, ŝ

tn
b,n) (G.37)

=
1

n

n∑
i=1

ζζζi,j · π̃i(βββ + bζζζi,jej + b · z(ζζζi), ŝ
tn
b,n + bζi, ŝ

tn
b,n) (G.38)

=
∑

ζζζ∈{−1,1}d s.t. ζζζj=1
ζ∈{−1,1}

nζζζ,ζ

n

nζζζ,ζ∑
i=1

π̃i(βββ + bej + b · z(ζζζ), ŝtnb,n + bζ, ŝtnb,n) (G.39)

−
∑

ζζζ∈{−1,1}d s.t. ζζζj=−1
ζ∈{−1,1}

nζζζ,ζ

n

nζζζ,ζ∑
i=1

π̃i(βββ − bej + b · z(ζζζ), ŝtnb,n + bζ, ŝtnb,n) (G.40)

To establish convergence properties of terms in the double sums in (G.39) and (G.40), we must establish
stochastic equicontinuity of the collection of stochastic processes {π̃n(βββ, s, r)} indexed by (s, r) ∈ S × S.
Because S × S is compact and Π̃(βββ, s; r) is continuous in (s, r), then we can show that {π̃n(βββ, s, r)} by
showing that π̃n(βββ, s, r) converges uniformly in probability to Π̃(βββ, s; r) (Lemma 27). We can use Lemma 26
to show the necessary uniform convergence result.

By Lemma 48, we have that π̃ satisfies the conditions of Lemma 26. Thus, we can apply Lemma 26
to establish uniform convergence in probability of π̃n(βββ, s, r) with respect to (s, r). As a consequence, the
collection of stochastic processes {π̃n(βββ, s, r)} is stochastically equicontinuous. In particular, π̃n(βββ, s, r) is
stochastically equicontinuous at (s(βββ, b), s(βββ, b)), where s(βββ, b) is the unique fixed point of q(Pβββ,s,b) (see
Lemma 51). By Lemma 52, we have that

ŝtnb,n
p−→ s(βββ, b).

Now, we can apply Lemma 28 to establish convergence in probability for the terms in (G.39) and (G.40). As
an example, for a perturbation ζζζ ∈ {−1, 1}d with j-th entry equal to 1 and arbitrary ζ ∈ {−1, 1}, Lemma
28 gives that

π̃nζζζ,ζ
(βββ + bej + b · z(ζζζ), ŝtnb,n + bζ, ŝtnb,n)

p−→ π̃nζζζ,ζ
(βββ + bej + b · z(ζζζ), s(βββ, b) + bζ, s(βββ, b)),

and by the Weak Law of Large Numbers, we have that

π̃nζζζ,ζ
(βββ + bej + b · z(ζζζ), s(βββ, b) + bζ, s(βββ, b))

p−→ Π̃(βββ + bej + b · z(ζζζ), s(βββ, b) + bζ, s(βββ, b)).

Analogous results for the remaining terms in (G.39) and (G.40). Also,

nζζζ,ζ

n

p−→ 1

2d+1
, ζζζ ∈ {−1, 1}d, ζ ∈ {−1, 1}.

By Slutsky’s Theorem, when any j and b fixed, we have

snzy,j
p−→

∑
ζζζ∈{−1,1}d s.t. ζζζj=1

ζ∈{−1,1}

Π̃(βββ + bej + b · z(ζζζ), s(βββ, b) + bζ, s(βββ, b))

2d+1 · b
(G.41)

−
∑

ζζζ∈{−1,1}d s.t. ζζζj=−1
ζ∈{−1,1}

Π̃(βββ − bej + b · z(ζζζ), s(βββ, b) + bζ, s(βββ, b))

2d+1 · b
. (G.42)
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Let Rb denote the expression on the right side of the above equation. If there is a sequence {bn} such
that bn → 0, then by Lemma 51, s(βββ, bn) → s(βββ), where s(βββ) is the unique fixed point of q(Pβββ,s). Since

Π̃ = Π and by continuity of Π,

Rbn →
∂Π

∂βββj
(βββ, s(βββ); s(βββ)).

Using the definition of convergence in probability, we show that there exists such a sequence {bn}. From
(G.41) and (G.42), we have that for each ϵ, δ > 0 and b > 0 and sufficiently small, there exists n(ϵ, δ, b) such
that for n ≥ n(ϵ, δ, b)

P (|snzy,j −Rb| ≤ ϵ) ≥ 1− δ.

So, we can fix δ > 0. For k = 1, 2, . . . , let N(k) = n( 1k , δ,
1
k ). Then, we can define a sequence such that

bn = ϵn = 1
k for all N(k) ≤ n ≤ N(k + 1). So, we have that ϵn → 0 and bn → 0. Thus, we have that

snzy,j
p−→ ∂Π

∂βββj
(βββ, s(βββ); s(βββ)).

Considering all indices j,

snzy
p−→ ∂Π

∂βββ
(βββ, s(βββ); s(βββ)).

It remains to establish convergence in probability for Szz. We have that

Sn
zz =

1

b2nn
ZTZ

=
1

b2nn

n∑
i=1

(bnζζζi)
T (bnζζζi).

=
1

n

n∑
i=1

ζζζTi ζζζi.

We note that

Eζζζi∼Rd [ζζζi,jζζζi,k] =

{
1 if j = k

0 if j ̸= k

because ζζζi is a vector of independent Rademacher random variables. So, E
[
ζζζTi ζζζi

]
= Id. By the Weak Law

of Large Numbers, we have that

Sn
zz

p−→ Id.

Finally, we can use Slutsky’s Theorem to show that

Γ̂n
πππ,βββ(βββ, ŝ

tn
n ; ŝtnn ) = (Sn

zz)
−1snzy

p−→ (Id)
−1 ∂Π

∂βββ
(βββ, s(βββ); s(βββ)) =

∂Π

∂βββ
(βββ, s(βββ); s(βββ)).

G.24 Proof of Corollary 55

The proof of this result is analogous to Lemma 54.

G.25 Proof of Lemma 56

We study the convergence of the kernel density estimate pn
βββ,ŝtnn ,bn

(ŝtnbn,n). Let pnβββ,s,b(r) is a kernel density

estimate of density of Pβββ,s,b at a point r. Let βββi = βββ + bζζζi, si = s+ bζi, where ζζζ ∼ Rd and ζ ∼ R. We can
write the explicit form of pnβββ,s,b(r) as follows

pnβββ,s,b(r) =
1

hn

n∑
i=1

k
(r − βββT

i x(βββi, si, νi) + bζi
hn

)
.
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For sufficiently small b, we can apply Lemma 50 to map the types ν ∼ F and cost functions cν to types
ν′b,ζζζ,ζ ∼ F̃b and cost functions cν′ , so that when the agent with type ν′b,ζζζ,ζ best responds to the unperturbed
model and threshold, they obtain the same raw score (without noise) as the agent with type ν who responds
to a perturbed model and threshold. So, we can write

pnβββ,s,b(r) =
1

hn

n∑
i=1

k
(r − βββTx(βββ, s, ν′i)

hn

)
=

1

hn

n∑
i=1

k
(r − βββTx∗(βββ, s, ν′i)− βββTϵϵϵi

hn

)
.

Let H denote the joint distribution of ν′b,ζζζ,ζ ∼ F̃b and ϵϵϵ ∼ N(0, σ2Id).

wb := (ν′b,ζζζ,ζ , ϵϵϵ)

k̃(wb,βββ, s, r;h) := k
(r − βββTx∗(βββ, s, ν′b,ζζζ,ζ)− βββTϵϵϵ

h

)
k̃n(βββ, s, r;h) :=

1

n

n∑
i=1

k̃(wb,βββ, s, r, ;h)

K(βββ, s, r;h) := Ew∼H

[
k̃(wb;βββ, s, r;h)

]
.

We can write

pn
βββ,ŝtnbn,n,b

(ŝtnbn,n) =
1

hn
k̃n(βββ, ŝ

tn
bn,n

, ŝtnbn,n;hn).

Due to the density estimate’s dependence on the stochastic process ŝtnbn,n, we first must establish the

stochastic equicontinuity of the collection of stochastic processes {k̃n(βββ, s, r)} indexed by (s, r) ∈ S ×S. We
show stochastic equicontinuity via uniform convergence in probability (Lemma 26). The remainder of the
proof follows by the Weak Law of Large Numbers and taking standard limits.

We fix hn = h. Since k̃ satisfies the conditions of Lemma 26, we can apply Lemma 26 to realize that
k̃n(βββ, s, r;h) converges uniformly in probability to K(βββ, s, r;h) with respect to (s, r) ∈ S×S. As a result, the
collection of stochastic processes {k̃n(βββ, s, r;h)} indexed by (s, r) ∈ S ×S are stochastically equicontinuous.
In particular, {k̃n(βββ, s, r;h)} is stochastically equicontinuous at (s(βββ, b), s(βββ, b)). By Lemma 52, we have that

ŝtnb,n
p−→ s(βββ, b),

where s(βββ, b) is the unique fixed point of q(Pβββ,s,b). we can apply Lemma 28 to see that

kn(βββ, ŝ
tn
b,n, ŝ

tn
b,n;h)− kn(βββ, s(βββ, b), s(βββ, b);h)

p−→ 0.

Furthermore, by the Weak Law of Large Numbers, we have that

kn(βββ, s(βββ, b), s(βββ, b);h)
p−→ K(βββ, s(βββ, b), s(βββ, b);h).

Given our definition of the kernel function k and for fixed h, we have that

pn
βββ,ŝtnb,n,b

(ŝtnbn,n)
p−→ K(βββ, s(βββ, b), s(βββ, b);h)

h
=

Pβββ,s(βββ,b),b(s(βββ, b) +
h
2 )− Pβββ,s(βββ,b),b(s(βββ, b)− h

2 )

h
.

Given that our sequence hn → 0 and nhn → ∞ and k satisfies the assumptions of Theorem 33, we can
apply Theorem 33 to see that for each fixed b, we obtain a consistent density estimate.

pn
βββ,ŝtnb,n,b

(ŝtnb,n)
p−→ lim

hn→0

Pβββ,s(βββ,b),b(s(βββ, b) +
hn

2 )− Pβββ,s(βββ,b),b(s(βββ, b)− hn

2 )

hn
(G.43)

= pβββ,s(βββ,b),b(s(βββ, b)). (G.44)

Let Rb denote the right side of the above equation. Suppose there exists a sequence such that bn → 0. By
Lemma 51, this gives us that s(βββ, bn)→ s∗, where s∗ is the unique fixed point of q(Pβββ,s). We can show that
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Rbn → pβββ,s∗(s
∗) as follows.

|Rbn − pβββ,s∗(s
∗)| ≤|pβββ,s(βββ,bn),bn(s(βββ, bn))− pβββ,s(βββ,bn)(s(βββ, bn))|

+ |pβββ,s(βββ,bn)(s(βββ, bn))− pβββ,s∗(s
∗)|

≤ sup
s,r∈S

|pβββ,s,bn(r)− pβββ,s(r)|

+ |pβββ,s(βββ,bn)(s(βββ, bn))− pβββ,s∗(s
∗)|.

Since pβββ,s(r) is continuous in s and r (Lemma 42), there exists N such that for n ≥ N , the second term is
less than ϵ. To bound the first term, we require the following lemma.

Lemma 62. Under Assumptions 1, 2, 3, and 4, if σ2 > 2
α∗(F )·

√
2πe

, then pβββ,s,b(r)→ pβββ,s(r) uniformly in s

and in r as b→ 0. Proof in Appendix G.31.

Due to the uniform convergence result, we have that if there exists a sequence {bn} such that bn → 0,
then

Rbn → pβββ,s∗(s
∗).

It remains to show that there exists such a sequence {bn} where bn → 0. Using the definition of convergence
in probability, we show that there exists such a sequence {bn}. From (G.44), we have that for each ϵ, δ > 0
and b > 0 and sufficiently small, there exists n(ϵ, δ, b) such that for n ≥ n(ϵ, δ, b)

P (|pn
βββ,ŝtnbn,n,bn

(ŝtnbn,n)−Rb| ≤ ϵ) ≥ 1− δ.

So, we can fix δ > 0. For k = 1, 2, . . . , let N(k) = n( 1k , δ,
1
k ). Then, we can define a sequence such that

bn = ϵn = 1
k for all N(k) ≤ n ≤ N(k + 1). So, we have that ϵn → 0 and bn → 0. Finally, this gives that

pn
βββ,ŝtnn ,bn

(ŝtnn )
p−→ pβββ,s∗(s

∗).

G.26 Proof of Lemma 57

First, we note that s(βββ) is continuously differentiable in βββ by Corollary 9, so we can use implicit differentiation
to compute the following expression for ∂s

∂βββ

∂s

∂βββ
=

1

1− ∂q(Pβββ,s(βββ))

∂s

·
∂q(Pβββ,s(βββ))

∂βββ
. (G.45)

After that, we apply the lemma below to express the partial derivatives of the quantile mapping q(Pβββ,s) in
terms of partial derivatives of the complementary CDF Π(βββ, s; r).

Lemma 63. Let βββ ∈ B, s ∈ S. Under Assumption 1, 2, 3, if σ2 > 2
α∗·

√
2πe

then for βββt, st sufficiently close

to βββ, s, the derivative of q(Pβββ,s) with respect to a one-dimensional parameter θ is given by

∂q(Pβββ,s)

∂θ
=

1

pβββt,st(rt)
· ∂Π
∂θ

(βββ, s; rt),

where rt = q(Pβββt,st). Proof in Appendix G.32.

Since s(βββ) is the fixed point induced by βββ, we have that

s(βββ)− q(Pβββ,s(βββ)) = 0.

From Corollary 9, we have that s(βββ) is continuously differentiable in βββ. Differentiating both sides of the
above equation with respect to βββ yields

∂s

∂βββ
−
(∂q(Pβββ,s(βββ))

∂βββ
+

∂q(Pβββ,s(βββ))

∂s
· ∂s
∂βββ

)
= 0.
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Rearranging the above equation yields (F.15), which shows that ∂s
∂βββ in terms of

∂q(Pβββ,s)

∂s and
∂q(Pβββ,s)

∂βββ . From

Lemma 63, we have that for βββt, st sufficiently close to βββ, s, we have that

∂q(Pβββ,s)

∂s
=

1

pβββt,st(rt)
· ∂Π
∂s

(βββ, s; rt)

∂q(Pβββ,s)

∂βββ
=

1

pβββt,st(rt)
· ∂Π
∂βββ

(βββ, s; rt),

where rt = q(Pβββt,st). Let s∗ = s(βββ). Suppose that we aim to estimate the derivative when the model
parameters are βββ and the threshold is s∗. If we consider βββt = βββ, st = s∗, then rt = s∗. So, we have that

∂q(Pβββ,s∗)

∂s
= − 1

pβββ,s∗(s∗)
· ∂Π
∂s

(βββ, s∗; s∗) (G.46)

∂q(Pβββ,s∗)

∂βββ
= − 1

pβββ,s∗(s∗)
· ∂Π
∂βββ

(βββ, s∗; s∗). (G.47)

Substituting (G.46) and (G.47) into (G.45) yields

∂s

∂βββ
=

1

pβββ,s∗(s∗)− ∂Π
∂s (βββ, s

∗; s∗)
· ∂Π
∂βββ

(βββ, s∗; s∗).

G.27 Proof of Lemma 58

By Lemma 38, H is positive definite and invertible. As a result, we can apply the Sherman-Morrison Formula
(Theorem 20) to
(H+G′′(s− βββTx)ββββββT )−1: let A = H, u = G′′(s− βββTx)βββ, and v = βββ.

(H+G′′(s− βββTx)ββββββT )−1 = H−1 − H−1(G′′(s− βββTx)βββ)βββTH−1

1 + βββTH−1(G′′(s− βββTx)βββ)

= H−1 − G′′(s− βββTx)H−1ββββββTH−1

1 +G′′(s− βββTx)βββTH−1βββ
.

G.28 Proof of Lemma 59

In the first part of the proof, we establish existence of a fixed point of ω(s;βββ, ν). In the second part of the
proof, we show that if a fixed point exists, then it must be unique.

First, we use the IVT to show existence of a fixed point. We apply the IVT to the function h(s;βββ, ν) =
s − ω(s;βββ, ν). We note that by Lemma 2 that ω(s) is continuous. It remains to show that there exists sl
such that h(s1) < 0 and there exists s2 such that s2 > s1 and h(s2) > 0. Then, by the Intermediate Value
Theorem, there must be s ∈ [s1, s2] for which h(s) = 0, which gives that ω(s) has at least one fixed point.

Let δ > 0. By Lemma 40, we have that there exists Sl,1 so that for all s ≤ Sl, we have that

|βββTx∗(βββ, s, ν)− βββTηηη| < δ.

Let Sl,2 = βββTηηη − δ. Let s1 < min(Sl,1, Sl,2). Then we have that

h(s1) = s1 − βββTx∗(βββ, s1, ν)

≤ s1 − βββTηηη + δ

< (βββTηηη − δ)− βββTηηη + δ.

< 0.
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Second, by Lemma 40, we have that there exists Sh,1 so that for all s ≥ Sl, we have that

|βββTx∗(βββ, s, ν)− βββTηηη| < δ.

Let Sh,2 = βββTηηη + δ. Let s2 > max(Sh,1, Sh,2). Then we have that

h(s2) = s2 − βββTx∗(βββ, s2, ν)

≥ s2 − βββTηηη − δ

> 0.

We have that s1 < βββTηηη − δ < βββTηηη + δ < s2. By the IVT, there must be some s ∈ [s1, s2] so that h(s) = 0.
Second, we show that if a fixed point exists, then the fixed point must be unique. By Lemma 39, h(s;βββ, ν)
is strictly increasing in s. There can be only one point at which h(s;βββ, ν) = 0. So, there is only one s such
that s− ω(s;βββ, ν) = 0. Thus, ω(s) has a unique fixed point.

G.29 Proof of Lemma 60

Since y is in the interior of X , then there exists some ϵ > 0 such that the open ball of radius ϵ about y is a
subset of X . We note that

|y′ − y| =
∣∣∣βββ · (bζζζTx− bζζζ)

∣∣∣
≤ ||βββ|| ·

∣∣∣bζζζTx− bζζζ
∣∣∣

≤ |bζζζTx− bζ|
≤ b|ζζζTx− ζ|
≤ b(|ζζζ||x|+ |ζ|)

≤ b(
√
d · sup

x∈X
|x|+ 1)

Since X is compact, we can say that the supremum in the above equation is achieved on X and we can call
its value m. So, if b < ϵ

(m
√
d+1)

, then y′ ∈ Int(X ).

G.30 Proof of Lemma 61

We first show that Pβββ,s,b(r) → Pβββ,s(r) uniformly in r as b → 0. We aim to apply Lemma 29. First, note
that the continuity of Pβββ,s in r is given by Lemma 42. We recall that

Pβββ,s,b(r) =
1

2d+1

∑
ζζζ∈{−1,1}d

ζ∈{−1,1}

∫
G
(
r − (βββ + bζζζ)Tx∗(βββ + bζζζ, s+ bζ, ν) + bζ

)
dF.

G is strictly increasing, so Pβββ,s,b(r) is strictly increasing because the sum of strictly increasing functions is
also strictly increasing. By continuity of x in βββ and s (Lemma 2), we have that Pβββ,s,b(r)→ Pβββ,s(r) pointwise
in r. By Lemma 29, as b→ 0, we have that

sup
r∈S
|Pβββ,s,b(r)− Pβββ,s(r)| → 0.

G.31 Proof of Lemma 62

We show that pβββ,s,b(r) → pβββ,s(r) uniformly in s and r as b → 0. We prove the claim in two steps. First,
we rewrite pβββ,s(r) and pβββ,s,b(r) as a finite sum of terms that align by type and perturbation. Second,
we can show uniform convergence for pairs of terms in the sums, which gives that the aggregate quantity
pβββ,s,b(r)→ pβββ,s(r) uniformly.
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First, we rewrite pβββ,s as follows

pβββ,s(r) =

∫
X×G

G′(r − βββTx∗(βββ, s, ν))dF (G.48)

=
∑

ν∈supp(F )

∑
ζζζ∈{−1,1}d

ζ∈{−1,1}

G′(r − βββTx∗(βββ, s, ν))
f(ν)

2d+1
. (G.49)

To rewrite pβββ,s,b, recall that for sufficiently small b, we can use Lemma 50 to express Pβββ,s,b as the score

distribution induced by agents with types ν′b,ζζζ,ζ ∼ F̃b and cost functions cν′ who best respond to a model
βββ and threshold s. The type and cost function is given by transformation T from Lemma 60. Recall that
T : (ν, cν , ζζζ, ζ, b)→ (ν′b,ζζζ,ζ , cν′). Let T1 be defined as

T1 : (ν, cν ; b, ζζζ, ζ)→ ν′b,ζζζ,ζ .

Since our assumed conditions also transfer to F̃b, we have that that Pβββ,s,b(r) is continuously differentiable
in r with density pβββ,s,b (Lemma 42). Using the function T1, we have that

pβββ,s,b(r) =

∫
X×G

G′(r − βββTx∗(βββ, s, ν))dF̃b (G.50)

=
∑

ν′
b,ζζζ,ζ

∈supp(F̃b)

G′(r − βββTx∗(βββ, s, ν′b,ζζζ,ζ)) · f̃b(ν′b,ζζζ,ζ) (G.51)

=
∑

ν∼supp(F )

∑
ζζζ∈{−1,1}d

ζ∈{−1,1}

G′(r − βββTx∗(βββ, s, T1(ν, cν ; b, ζζζ, ζ))) · f̃b(T1(ν, cν ;ζζζ, ζ, b)) (G.52)

=
∑

ν∼supp(F )

∑
ζζζ∈{−1,1}d

ζ∈{−1,1}

G′(r − βββTx∗(βββ, s, T1(ν, cν ; b, ζζζ, ζ))) ·
f(ν)

2d+1
. (G.53)

The last line follows from Lemma 50, where we have that

f̃b(T1(ν, cν ; b, ζζζ, ζ)) =
f(ν)

2d+1
ν ∼ F.

Therefore, the terms of pβββ,s in (G.49) align with the terms of pβββ,s,b in (G.53) by type and perturbation. We
have that

|pβββ,s,b(r)− pβββ,s(r)|

=
∣∣∣ ∑
ν∈supp(F )

∑
ζζζ∈{−1,1}d

ζ∈{−1,1}

(G′(r − βββTx∗(βββ, s, T1(ν, cν ; b, ζζζ, ζ)))−G′(r − βββTx∗(βββ, s, ν))) · f(ν)
2d+1

∣∣∣
≤

∑
ν∈supp(F )

ζζζ∈{−1,1}d

ζ∈{−1,1}

∣∣∣G′(r − βββTx∗(βββ, s, T1(ν, cν ; b, ζζζ, ζ)))−G′(r − βββTx∗(βββ, s, ν))
∣∣∣ · f(ν)

2d+1
.

Since the sum in the above inequality is finite, we can show pβββ,s,b(r)→ pβββ,s(r) uniformly in s, r if we can
show that for every type ν and perturbation (ζζζ, ζ), we have that

sup
(s,r)∈S×S

|G′(r − βββTx∗(βββ, s, T1(ν, cν ; b, ζζζ, ζ)))−G′(r − βββTx∗(βββ, s, ν))| → 0.

Now, we can use the following lemma to show uniform convergence (in s and r) of the arguments to G′

in the above expression.
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Lemma 64. Suppose Assumption 1 and 4 hold. Let ν ∼ F and cν be a cost function. Let ν′b,ζζζ,ζ , cν′ =

T (ν, cν ; b, ζζζ, ζ), where T is as defined in Lemma 49 for any ζζζ ∈ {−1, 1}d, ζ ∈ {−1, 1}, and b > 0 and
sufficiently small. As b→ 0, βββTx∗(βββ, s, ν′b,ζζζ,ζ)→ βββTx∗(βββ, s, ν) uniformly in s. Proof in Appendix G.33.

We observe that

sup
(s,r)∈S×S

|(r − βββTx∗(βββ, s, T1(ν, cν ; b, ζζζ, ζ)))− (r − βββTx∗(βββ, s, ν))|

= sup
(s,r)∈S×S

|βββTx∗(βββ, s, T1(ν, cν ; b, ζζζ, ζ))− βββTx∗(βββ, s, ν))|

= sup
s∈S
|βββTx∗(βββ, s, T1(ν, cν ; b, ζζζ, ζ))− βββTx∗(βββ, s, ν)| → 0,

where the uniform convergence in the last line follows from Lemma 64. Since the argument to G′ in (G.53)
converges uniformly in s and r, the argument to G′ is uniformly bounded. So, we can restrict the domain of
G′ to an closed interval on which it is uniformly continuous. As a result, we also have that

sup
(s,r)∈S×S

|G′(r − βββTx∗(βββ, s, T1(ν, cν ; b, ζζζ, ζ)))−G′(r − βββTx∗(βββ, s, ν))| → 0,

which concludes the proof.

G.32 Proof of Lemma 63

For simplicity, we can write

rt = q(Pβββt,st) = P−1
βββt,st(q), r = q(Pβββ,s) = P−1

βββ,s(q).

From Lemma 5, we have the q(Pβββ,s) is continuous in βββ, s. In addition, we note that the density of the
scores pβββ,s(y) is continuous with respect to βββ, s, y (Lemma 42). By the continuity of the density of the
scores and the quantile mapping, we can choose βββt, st sufficiently close to βββ, s such that |r − rt| < ϵ and
|pβββ,s(rt)− pβββt,st(r

t)| < ϵ.
From Lemma 42, we have that Pβββ,s and Pβββt,st have unique inverses. So, the quantile mapping is uniquely

defined, which means
Pβββt,st(r

t) = q, Pβββ,s(r) = q.

As a result, we have that Pβββt,st(r
t) = Pβββ,s(r). Without loss of generality, suppose that r > rt,

Pβββt,st(r
t)− Pβββ,s(r

t) = Pβββ,s(r)− Pβββ,s(r)

=

∫ r

−∞
pβββ,s(y)dy −

∫ t

−∞
pβββ,s(y)dy

=

∫ r

rt
pβββ,s(y)dy

= (r − rt)pβββ,s(r
t) + o(|rt − r|)

= (r − rt)pβββt,st(r
t) + o((r − rt)|pβββ,s(rt)− pβββt,st(r

t)|) + o(|r − rt|)
= (r − rt)pβββt,st(r

t) + o(|r − rt| · |pβββ,s(rt)− pβββt,st(r
t)|) + o(|r − rt|)

= (r − rt)pβββt,st(r
t) + o(ϵ2) + o(ϵ)

= (q(Pβββ,s)− q(Pβββt,st))pβββt,st(r
t) + o(ϵ2) + o(ϵ)

We can differentiate both sides of the above equation with respect to a one-dimensional parameter θ.

−
∂Pβββ,s(r

t)

∂θ
=

∂q(Pβββ,s)

∂θ
· pβββt,st(r

t).
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From the Definition of Π(βββ, s; r) in (5.3), we observe that

∂Pβββ,s(r)

∂θ
= −∂Π

∂θ
(βββ, s; r).

Solving for
∂q(Pβββ,s)

∂θ , we find that

∂q(Pβββ,s)

∂θ
=

1

pβββt,st(rt)
· ∂Π
∂θ

(βββ, s; rt).

G.33 Proof of Lemma 64

Consider b sufficiently small so that the transformation in Lemma 49 is possible. Let η′b,ζζζ,ζ be as defined in

(F.2). Let hb : S → R, where hb(s) := s− βββTx∗(βββ, s, ν′b,ζζζ,ζ) and h(s) := s− βββTx∗(βββ, s, ν). It is sufficient to
show that hb(s)→ h(s) uniformly in s because

sup
s∈S
|βββTx∗(βββ, s, ν′b,ζζζ,ζ)− βββTx∗(βββ, s, ν)| = sup

s∈S
|s− βββTx∗(βββ, s, ν′b,ζζζ,ζ)− s+ βββTx∗(βββ, s, ν)|

= sup
s∈S
|hb(s)− h(s)|.

We aim to apply Lemma 29 to show hb → h uniformly. We have that S compact. By Lemma 2, we have
that h(s) is continuous. By Lemma 39, we have that each hb strictly increasing in s. In addition, we have
the following pointwise convergence

lim
b→0

hb(s) = lim
b→0

s− βββTx∗(βββ, s, ν′b,ζζζ,ζ) (G.54)

= lim
b→0

s− βββT
(
x(βββ + bζζζ, s+ bζ, ν) + b · βββ(ζζζTx∗(βββ + bζζζ, s+ bζ, ν)− ζ)

)
(G.55)

= lim
b→0

s− βββTx∗(βββ + bζζζ, s+ bζ, ν)− b · (ζζζTx∗(βββ + bζζζ, s+ bζ, ν)− ζ) (G.56)

= s− βββTx∗(βββ, s, ν) (G.57)

= h(s). (G.58)

(G.55) follows from Lemma 49, which gives an explicit expression for x∗(βββ, s, ν′b,ζζζ,ζ). (G.57) follows from
continuity of the best response mapping in βββ, s (Lemma 2). Thus, hb → h uniformly, so we have that
βββTx∗(βββ, s, ν′b,ζζζ,ζ)→ βββTx∗(βββ, s, ν) uniformly in s.
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