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Abstract

In the dominant paradigm for designing equitable machine learning systems, one

works to ensure that model predictions satisfy various fairness criteria, such as parity in

error rates across race, gender, and other legally protected traits. That approach, how-

ever, typically ignores the downstream decisions and outcomes that predictions affect,

and, as a result, can induce unexpected harms. Here we present an alternative frame-

work for fairness that directly anticipates the consequences of decisions. Stakehold-

ers first specify preferences over the possible outcomes of an algorithmically informed

decision-making process. For example, lenders may prefer extending credit to those

most likely to repay a loan, while also preferring similar lending rates across neigh-

borhoods. One then searches the space of decision policies to maximize the specified

utility. We develop and describe a method for efficiently learning these optimal policies

from data for a large family of expressive utility functions, facilitating a more holistic

approach to equitable decision-making.

1 Introduction

Statistical predictions are now used to inform high-stakes decisions in a wide variety of

domains. For example, in banking, loan decisions are based in part on estimated risk of

default [Leo et al., 2019]; in criminal justice, judicial bail decisions are based on estimated

risk of recidivism [Cadigan and Lowenkamp, 2011, Latessa et al., 2010, Goel et al., 2018,
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Milgram et al., 2014]; in healthcare, algorithms identify which individuals will receive limited

resources, including HIV prevention counseling and kidney replacements [Wilder et al., 2021,

Friedewald et al., 2013]; and in child services, screening decisions are based on the estimated

risk of adverse outcomes [Brown et al., 2019, Chouldechova et al., 2018, De-Arteaga et al.,

2020, Shroff, 2017]. In these applications and others, equity is a central concern. In the

machine learning community, efforts to design fair algorithms have largely focused on the

predictions generated by algorithms themselves. In particular, researchers have proposed

numerous methods to constrain predictions to achieve formal statistical properties, such as

parity in error rates across demographic groups [Barocas et al., 2017, Chouldechova and

Roth, 2018, Corbett-Davies and Goel, 2018].

To illustrate this traditional paradigm, suppose a policymaker seeks to help individuals

attend appointments (e.g., medical visits or court dates) by equitably providing government-

sponsored transportation to and from their appointment. To design this transportation

assistance program, one might use historical data to estimate the likelihood individuals will

miss their appointment, and then allocate assistance to those at highest risk. In popular

approaches for designing fair algorithms, one might also exclude protected attributes (e.g.,

race and gender) from the feature set, and may additionally constrain the predictive model

to yield similar error rates across race and gender groups.

This common approach, however, suffers from several significant shortcomings. First, the

strategy neglects to consider the idiosyncratic value of attending an appointment. For

example, it may be more important for those with serious health conditions to attend their

appointments than for clients who are generally healthy. Second, standard techniques for

incorporating equity—such as blinding algorithms or equalizing error rates—may in fact

harm the very groups one seeks to aid. For example, gender-blind criminal risk assessments

have been shown to overestimate the risk that female defendants recidivate, which may thus

lead to increased detention rates for women [Skeem et al., 2016]. Third, it may not yield

an efficient strategy for allocating limited transportation resources to increase appearance

rates, since those at highest risk of missing their appointments are not necessarily the same

as those who are likely to alter their behavior in response to transportation assistance.

Indeed, some prior work has shown that untargeted rideshare assistance may not improve

average appearance rates [Chaiyachati et al., 2018a]. In this case, as in many others like

it, it is important to consider the heterogeneous causal effects of one’s actions—providing

transportation assistance—on downstream outcomes, like appointment appearance.

To address the concerns outlined above, we propose an alternative, consequentialist frame-
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work to algorithmic fairness that foregrounds the results of one’s decisions, rather than the

predictions used to inform those choices. This consequentialist approach stands in con-

trast with deontological approaches, which focus primarily on the process through which

decisions are made, rather than the consequences of those decisions.

In our approach, one starts by identifying the utility of different possible outcomes of a

decision-making policy. For example, courts may value both efficiency and equity, preferring

policies that achieve both high appearance rates as well as demographic diversity among

recipients of transportation assistance. Then, given these complex preferences, we learn

a decision-making policy with the largest expected utility given budget constraints. For a

large and expressive family of utility functions, we show that optimal decision policies can be

derived by solving a linear program (LP) that uses stakeholder preferences and historical

data on decisions and outcomes. In comparison, traditional approaches to algorithmic

fairness—which do not explicitly consider the consequences of decisions—typically yield

sub-optimal policies, illustrating the value of our approach.

Policymakers often choose to launch new programs without any historical data on how

their proposed treatments impact outcomes. We show how one can efficiently learn utility-

maximizing policies in this scenario. We first demonstrate that static experimental designs

(i.e., those that are nonadaptive to observed outcomes from earlier participants, such as

randomized controlled trials) commonly used in these settings [Chaiyachati et al., 2018a,b]

would be feasible with our framework, and bound the size of the experimental trial needed

to obtain near-optimal decision policies. Second, we demonstrate that adaptive experi-

mental designs provide some key advantages over static experimental designs. Inspired by

work in multi-armed bandits (e.g. Auer et al. [2002]), we learn policies through optimistic

exploration—where, at each step, we act according to a policy optimized under optimistic

estimates of the potential outcomes under different actions. In contrast to the standard

contextual multi-armed bandit setting, we consider a more complex, structured objective

to account for fairness preferences and budget constraints inherent to many real-world ap-

plications. As such, our actions at each iteration are guided by solving an LP as described

above.

To illustrate and evaluate these approaches, we use client data from the Santa Clara County

Public Defender Office and run a series of empirically grounded simulations. We show

that using adaptive experimental designs with our framework yields better outcomes for

participants during learning, and often more quickly identifies higher utility decision policies

for future use, compared to static experimental approaches like randomized control trials.
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2 Related Work

Our work draws on research in algorithmic fairness, fair division, multi-objective optimiza-

tion, and contextual bandits with budgets—connections that we briefly discuss below.

Over the last several years, there has been increased attention on designing equitable ma-

chine learning systems [Buolamwini and Gebru, 2018, Raji and Buolamwini, 2019, Blodgett

and O’Connor, 2017, Caliskan et al., 2017, De-Arteaga et al., 2019, Ali et al., 2019, Datta

et al., 2018, Obermeyer et al., 2019, Goodman et al., 2018, Chouldechova et al., 2018,

Koenecke et al., 2020, Shroff, 2017], and concomitant development of formal criteria to

characterize fairness [Barocas et al., 2017, Chouldechova and Roth, 2018, Corbett-Davies

and Goel, 2018, Gupta et al., 2020]. Some of the most popular definitions demand parity in

predictions across salient demographic groups, including parity in mean predictions [Feld-

man et al., 2015] or error rates [Hardt et al., 2016]. Another class of fairness definitions aims

to blind algorithms to protected characteristics, including through their proxies [Kilbertus

et al., 2017, Wang et al., 2019, Coston et al., 2020, Kusner et al., 2017, Nabi and Shpitser,

2018, Zhang and Bareinboim, 2018, Chiappa and Isaac, 2018, Wu et al., 2019, Nyarko et al.,

2021, Nilforoshan et al., 2022].

All of the above approaches conceptualize the equity of algorithmic decisions in terms of

universal rules (e.g., error rate parity) rather than considering the consequences of decisions.

Recent work has noted limitations to this deontological approach, which has dominated the

fair machine learning literature [Cowgill and Tucker, 2019, 2020, Corbett-Davies et al., 2017,

Kasy and Abebe, 2021]. In Section 4, we show that a narrow focus on predictive parity can

lead to a suboptimal allocation of limited transportation resources to clients. Some recent

exceptions have begun to consider algorithmic decision-making from a consequentialist per-

spective to varying degrees [Liu et al., 2018, Viviano and Bradic, 2020, Fang et al., 2022,

Donahue and Kleinberg, 2020, Coston et al., 2020, Nilforoshan et al., 2022]. For example,

Nilforoshan et al. [2022] show that common causal definitions of algorithmic fairness lead

to Pareto-dominated policies.

In a related thread of research on fair division problems, groups of individuals decide how to

split a limited set of resources amongst themselves [Bertsimas et al., 2011, Gal et al., 2017,

Caragiannis et al., 2012, Brams et al., 1996]. The broad aim of that work—to equitably

allocate a limited resource—is similar to our own, but it differs in three important respects.

First, canonical fair division problems seek to arbitrate between individuals with competing

preferences (e.g., as in cake-cutting style problems [Procaccia, 2013]), rather than adopting
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the preferences of a social planner, as we do. Second, and relatedly, much of the fair

division literature, like the algorithmic fairness literature, takes an axiomatic approach to

fairness, identifying allocations that have properties posited to be desirable, such as envy-

freeness [Cohler et al., 2011]. Although that perspective is useful in many applications, it

does not explicitly consider the preferences of policymakers, which may be incompatible

with these axiomatic constraints. Finally, work on fair division problems typically does not

try to learn causal effects of allocations on downstream outcomes from data, such as the

heterogeneous effect of transportation assistance on appearance rates.

In many real-world settings, decision makers have competing priorities, linking our work

to the large literature on learning to optimize in multi-objective environments [Zuluaga

et al., 2013]. Such inherent trade-offs have been recently considered in the fair machine

learning community (e.g., Corbett-Davies et al. [2017], Cai et al. [2020], Rolf et al. [2020]);

however, there has been little work on creating equitable learning systems that account for

competing objectives. Relatedly, a large and growing body of work has shown that one can

often efficiently elicit preferences for complex objectives, even in high-dimensional outcome

spaces [Lin et al., 2020, Fürnkranz and Hüllermeier, 2010, Chu and Ghahramani, 2005].

One particularly challenging aspect of our setting is handling budget constraints (e.g., we

may only be able to provide rideshare assistance to a limited number of clients) [Luedtke

and van der Laan, 2016]. Recent work has proposed methods for learning decision policies

with fairness or safety constraints through reinforcement learning [Thomas et al., 2019]

and contextual bandit algorithms [Metevier et al., 2019], given access to a batch of prior

data. That work, however, neither addresses learning with budget constraints nor handles

the exploration-exploitation trade-off required for online learning. The challenge of budget

constraints has been considered in a more general form of knapsack constraints in bandit

settings. Slivkins et al. [2019, Ch. 10] provides a recent review of such work, focusing

on the primary literature, which has considered the (non-contextual) multi-armed bandit

setting. Earlier work on contextual multi-armed bandits with knapsacks [Badanidiyuru

et al., 2014, Agrawal et al., 2016b] provided regret bounds but lacked computationally

efficient implementations. Agrawal et al. [2016a] later proved regret guarantees for linear

contextual bandit with knapsacks. Wu et al. [2015] provide a computationally tractable,

approximate linear programming method for online learning for contextual bandits with

budget constraints. They do not consider multi-objective optimization, and their analysis

and experiments do not address continuous or large state spaces, which make their work

less applicable for equitable decision making in many settings of interest.
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3 Decision-Making as Optimization

We begin this section by describing our motivating example of providing transportation to

individuals with mandatory court dates. Next, we outline a general, utility-based paradigm

for equitable decision-making, and by assuming complete knowledge on the distribution

of potential outcomes under actions, we present a computationally efficient approach to

deriving optimal policies. (Later, in Section 5, we use this result to address the more

general problem of learning optimal policies via experimentation.)

3.1 Motivating Example

Consider the problem of allocating rideshare assistance to individuals who are required to at-

tend mandatory court dates. The consequences of missing a court date can be severe. Often,

after an individual misses a court appearance, judges will issue a “bench warrant”, which

can lead to the individual’s arrest at their next contact with law enforcement, and possibly

weeks or months of jail time. Despite these extreme consequences, some individuals struggle

to attend court because of significant transportation barriers. For example, in interviews

of individuals who have previously missed court, individuals stated that a combination of

mobility issues, inadequate public transportation, and their lack of a personal vehicle made

court attendance infeasible. Government agencies–including public defender offices—may

therefore aim to improve appearance rates by offering transportation assistance to and from

court for a subset of these individuals with the greatest transportation needs.1 This type of

intervention has promise for improving appearance rates by alleviating transportation bur-

dens many clients face, as has been demonstrated in medical settings [Chaiyachati et al.,

2018b, Vais et al., 2020, Fraade-Blanar et al., 2021, Saxon et al., 2019, Lyft, 2020].

A natural algorithmic approach to allocate rides is to prioritize those with the largest

estimated treatment effect per dollar. In particular, suppose we have access to a rich set

of covariates, Xi, for each individual i, such as their age, alleged offense, and history of

appearance. Based on these covariates, we could then estimate appearance rates for each

individual in the absence of assistance, Ŷi(0), and appearance rates if provided with a ride,

Ŷi(1)—for example, by using historical data and/or a randomized controlled trial. Finally,

we could sort individuals by ρi = [Ŷi(1)− Ŷi(0)]/ci, where ci is the cost of providing a ride

to the i-th individual, and offer assistance to those with the highest values of ρi until the

1As we discuss in Section 6, there are many alternative policy solutions to this issue, including discouraging

judicial use of incarceration after an individual misses court.
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vs. white) in the absence of parity constraints.

Figure 1: The map in a shows the geographic distribution of the client base of the Santa

Clara County Public Defender Office. The star on the map marks the location of the main

county courthouse, where most clients are required to appear for court appointments. The

plot on the right explores the consequence of following a policy that provides rides to those

with the highest estimated treatment effect per dollar without parity constraints. This

policy would result in higher average per person spending for white individuals than for

Vietnamese individuals. The red point in b shows that, for a fixed budget, an average per

person spending amount of $7.40 for white individuals would correspond to an average per

person spending amount of $5.38 for Vietnamese individuals.

budget is exhausted.

This strategy aims to achieve the highest appearance rate given the available budget. How-

ever, in so doing, it implicitly prioritizes those closest to the courthouse—for whom rides

are typically less expensive—which could lead to unintended consequences. For example,

consider the Santa Clara County Public Defender Office (SCCPDO) in California, which

represents tens of thousands of indigent clients every year. Like many American jurisdic-

tions, Santa Clara County, which includes San Jose, is racially segregated (Figure 1a). In

particular, Santa Clara’s Vietnamese population, one of the county’s largest ethnic minori-

ties, and a focus of the defender’s office, tends to live farther away from the courthouse

than other racial groups, including white individuals.
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To understand the impacts of a strategy that optimizes exclusively for appearance, we

start with a dataset of 22,283 cases handled by SCCPDO between between 2017 and 2019.

For each individual, we use the historical data to estimate Yi(0) based on age, gender,

offense severity (misdemeanor or felony), appearance history, and the client’s distance to

the courthouse. For simplicity, we assume Yi(1) = 1, meaning that all individuals who

receive a ride attend court. Finally, we assume rides cost $5 per mile. Under the naive

optimization approach outlined above, Figure 1b shows per-capita spending for white and

Vietnamese clients across different overall transportation budgets. For example, for an

overall budget of $80,000, a policy that allocates rides to those with the highest estimated

treatment effect per dollar would end up spending, on average, $7.40 for every white client,

but only $5.38 on average per Vietnamese client. Policymakers and other stakeholders may

deem this disparity to be undesirable, and may thus be willing to accept lower appearance

rates in return for more equal spending across groups, a trade-off that we formalize and

address in the following sections.

3.2 Problem Formulation

Consider a sequential decision-making setting like the one described above, where, at each

time step, one first observes a vector of covariates Xi drawn from a distribution DX sup-

ported on a finite state space X , and then must select one of K actions from the set

A = {a1, . . . , aK}. For example, in our motivating application, Xi might encode an in-

dividual’s demographics, history of appearance, alleged charges, and distance from court,

and the set of actions might specify whether or not rideshare assistance is offered (in which

case, K = 2). In general, we allow randomized decision policies π, where the action π(x) is

(independently) drawn from a specified distribution on A.

In practice, there are often constraints on the distribution of actions taken. For example,

budget limitations might mean that only a certain amount of money can be spent on average

per client, with varying known costs per context and action c(x, ak). As such, given a cap

b for average per-person expenditures, we require our decision policy π to satisfy

EX [c(X,π(X))] =
∑
x,k

Pr(X = x) · Pr(π(x) = ak) · c(x, ak) ≤ b.

In many common scenarios, we might imagine a setup where one “control” action a0 has

no cost, i.e., c(x, a0) = 0, while all other available actions are costly (i.e., c(x, ak) > 0 for
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k > 0). Each action is associated with a potential outcome Yi(ak), and, in particular, taking

action π(Xi) results in the (random) outcome Yi(π(Xi)). For example, Yi(1) may indicate

whether the i-th individual would attend their court date if offered rideshare assistance,

and Yi(0) may indicate the outcome if assistance were not provided.

Now, suppose we have a real-valued function r(x, a, y) that specifies a policymaker’s (ex-

post) value for the potential decisions (and corresponding outcomes) they could make for

each individual. In our motivating application, we might set

r(x, a, y) = (a+ c1y) · (1 + c2 · Ifrequent(x)) , (1)

where a ∈ {0, 1} indicates whether rideshare assistance is provided, y ∈ {0, 1} indicates

whether a client appeared at their court date, Ifrequent(x) indicates whether an individual is

in frequent contact with law enforcement, and the positive constants c1 and c2 characterize

the relative values of the terms.2 This choice of r encodes the (hypothetical) policymaker’s

belief that: (1) appearing at one’s court date is better than not appearing; (2) receiving

rideshare assistance is better than not receiving it, regardless of the outcome; and (3) the

value of both assistance and appearance is greater for those who frequently encounter law

enforcement (i.e., those for whom an open bench warrant is more likely to result in jail time

because they are more likely to encounter law enforcement).

Finally, given the above setup, we assume the policymaker’s utility U(π) of any decision

policy π takes the form:

U(π) = EX,Y [r(X,π(X), Y (π(X)))]

−
∑
g∈G

λg

∣∣∣EX [c(X,π(X)) | g ∈ s(X)]− EX [c(X,π(X))]
∣∣∣, (2)

where EX [c(X,π(X))] denotes the expected expenditure, |·| is an absolute value, λg are

non-negative constants, and s(Xi) ⊆ G is a set of associated identities for each individual,

where G is a finite set. In discussions of algorithmic fairness, special attention is often paid

to these groups, which may consist of legally protected characteristics. For example, s(Xi)

might specify both an individual’s race and gender.

The first term in U(π) captures the social value directly associated with each decision.

The second term captures the social value of spending parity across the population more

broadly. For example, in addition to preferring transportation assistance policies that boost

appearance rates, a policymaker might also prefer those for which we spend similar amounts

2In Eq. (1), we do not multiply a by a constant, since the overall scale of r is arbitrary.
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per person across neighborhoods, to ensure such investments are broadly applied across an

agency’s jurisdiction. Depending on the application, one could imagine replacing this term

with other such penalties: one may choose to penalize a given policy if the distribution of

actions or successes is unequal across groups. However, for the purposes of simplicity, we

focus on solely on spending disparities in this paper.

Our goal is to find a policy π∗ that maximizes utility while satisfying the budget constraints.

Formally, we seek to solve the following optimization problem:

π∗ ∈ argmax
π

U(π)

subject to: EX [c(X,π(X))] ≤ b.
(3)

We next discuss settings in which it is computationally efficient to derive these optimal

policies.

3.3 Computing Optimal Decision Policies

As a first step for computing optimal policies in real-world settings, we assume one knows

the distribution of X and the conditional distribution of the potential outcomes Y (ak) given

X—i.e., D(X) and D(Y (ak) | X). In this case, we show the optimization problem in Eq. (3)

can be expressed as a linear program (LP), yielding an efficient method for computing an

optimal decision policy. To construct the LP, first observe that any policy π corresponds to

a matrix v ∈ RX
+ ×RK

+ , where vx,k denotes the probability x is assigned to action k. Thus,

the complete space of policies Π can be written as:

Π =

{
v ∈ RX

+ × RK
+

∣∣∣∣∣
K∑
k=1

vx,k = 1

}
,

and we can accordingly view the components vx,k of v as decision variables in our LP. Now,

in this representation, the budget constraint EX [c(X,π(X))] ≤ b in Eq. (3) can be expressed

as a linear inequality on the decision variables:∑
x,k

Pr(X = x) · vx,k · c(x, ak) ≤ b.

Finally, we need to express the utility U(x) in linear form. First, note that:
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U(π) =
∑
x,k

EY [r(x, ak, Y (ak)) | X = x] · Pr(X = x) · vx,k

−
∑
g

∣∣∣∣∣∣
∑
x,k

λg

(
I(g ∈ s(x)) Pr(X = x)

Pr(g ∈ s(X))
· c(x, ak)− Pr(X = x) · c(x, ak)

)
vx,k

∣∣∣∣∣∣ .
Due to the absolute value, the expression above is not linear in the decision variables. But

we can use a standard construction to transform it into an expression that is. In general,

suppose we aim to maximize an objective function of the form

αT v −
∑
g

λg|βT
g v|, (4)

where α and β are constant vectors. We can rewrite this optimization problem as a linear

program that includes additional (slack) variables wg:

Maximize: αT v −
∑
g

λgwg

Subject to: 0 ≤ wg,

− wg ≤ βT
g v ≤ wg.

(5)

For completeness, we include a proof of this equivalence in Appendix A.

Putting together the pieces above, we now write our policy optimization problem in Eq. (3)

as the following linear program:

Maximize:∑
x,k

EY [r(x, ak, Y (ak)) | X = x] · Pr(X = x) · vx,k −
∑
g

λgwg

Subject to:

vx,k, wg ≥ 0 ∀x, k, g,∑
k

vx,k = 1 ∀x,∑
x,k

Pr(X = x) · vx,k · c(x, ak) ≤ b, and

− wg ≤
∑
x,k

(
I(g ∈ s(x)) Pr(X = x)

Pr(g ∈ s(X))
· c(x, ak)− Pr(X = x) · c(x, ak)

)
vx,k ≤ wg ∀g.

Our approach above is a computationally efficient method for finding optimal decision

polices. In theory, linear programming is (weakly) polynomial in the size of the input:
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O(|X |K+ |G|) variables and constraints in our case. In practice, using open-source software

running on conventional hardware, we find it takes roughly 1–2 seconds to solve random

instances of the problem on a state space of size |X | = 1, 000 with |G| = 10 groups and

K = 5 treatment arms.3

In the common case of K = 2 treatments (e.g., with the options corresponding to whether or

not one provides rideshare assistance), we show in Appendix B that optimal decision policies

have a simple, interpretable form. More broadly, our optimization approach accommodates

a wide range of utility functions even beyond the specific form we present in Eq. (2). For

example, we could similarly include terms in U(π) that encode a preference for parity in the

expected individual-level reward E[r(X,π(X), Y (π(X))] across groups. Further, rather than

focusing on parity, we could set group-specific target distributions for the assignments or

rewards. We note, however, that to express our general optimization problem as a tractable

LP, it is important for the group preferences encoded in U(π) to be written in terms of an

absolute value. A squared penalty could be expressed as a quadratic program (QP), but

such optimization problems are typically much more computationally challenging to solve.

More generally, if we were to allow arbitrary utility functions, then finding an optimal

decision policy is NP-hard, as we show below.

Proposition 1. If we allow arbitrary utility functions U in Eq. (3), then finding an optimal

policy is NP-hard.

Proof. Proof. We reduce to the NP-hard subset sum problem. Given integers x1, . . . , xn,

consider the policy optimization problem for K = 2 actions and no budget constraints (i.e.,

c(x, ak) = b = 1), with utility

U(π) =


1 A(π) ̸= ∅ ∧

∑
i∈A(π)

xi = 0

0 otherwise

where A(π) = {i : Pr(π(xi) = a1) = 1}. Then maxπ U(π) = 1 if and only if there exists a

non-trivial subset of the integers {x1, . . . , xn} that sums to zero, establishing the claim.

3We used the Glop linear optimization solver, as implemented in Google OR-Tools (https://developers.

google.com/optimization/).
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4 Choosing Among Potential Trade-Offs

The structure of our utility function in Eq. (2) captures a common trade-off in decision

problems. On one hand, one seeks to maximize the total number of realizations of a de-

sired outcome (e.g., appearances in court); on the other hand, one also seeks to minimize

spending disparities across groups in a population. To explore this trade-off, we return

again to our motivating application of allocating rideshare assistance to public defender

clients who are required to appear in court. For simplicity, here we consider a synthetic

client population with two equally sized groups that have identical appearance rates in the

absence of rideshare assistance, and further assume there is constant unit cost to provide a

ride to each individual (i.e., c(x, a1) = 1).4 However, one group (which we refer to as the

target group) has a lower average treatment effect, and so a preference for parity introduces

a tension between maximizing total appearances and equitably allocating assistance across

the two groups.5 We describe the data-generating process for this synthetic population in

detail in Appendix C.

In Figure 2, for budget b = 1/3, we trace out the Pareto frontier for this example, which

shows how the maximum possible number of appearances (on the vertical axis) varies under

different allocations of rideshare assistance to the target population (on the horizontal axis).

By Theorem 4, each point on the frontier corresponds to a threshold policy that provides

assistance to clients with the largest treatment effects in each group, subject to demographic

and budget constraints.

Among feasible options (i.e., points on the Pareto frontier), a policymaker ostensibly has

more and less preferred outcomes. We approximate these preferences by assuming utilities

follow the functional form in Eq. (2), with the family of utilities indexed by the latent

parameter λ.6 For example, imagine that a given policymaker’s utility is maximized at

the green point on the Pareto curve. In contrast, the point at the crest of the curve

(in blue) achieves the highest number of overall appearances, but is a suboptimal policy

because it underspends on the target population, at least according to the preferences of the

4With constant unit costs, spending parity also achieves treatment parity, and any budget between 0 and

1 represents both the average amount budgeted per capita and also the proportion of population treated.
5Optimizing for parity across protected demographic groups is legally impermissible in some contexts in

the U.S., as we discuss more in Section 6.
6One might show policymakers a series of comparisons from a specific problem domain, and then select

the λ that best captures their stated preferences in this domain. As such, we think of λ as a function of

one’s preferences over possible outcomes, rather than one’s preferences being a function of λ—contrasting

our consequentialist approach to a deontological one.
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Figure 2: The Pareto frontier for a stylized population model, showing the trade-off between

appearances and treatment rates in the target group. The vertical axis shows expected

additional appearances relative to a policy that does not provide rideshare assistance to

any clients. Under this model, with the policymaker’s utility maximized at λ = 0.01,

common heuristics (e.g. maximizing appearances, and demanding demographic or error-

rate parity) lead to sub-optimal policies.

policymaker. Similarly, a policy that achieves perfect spending parity (i.e., the pink point)

also demonstrates suboptimal outcomes relative to the policymaker’s preferences, because

too many appearances are lost in order to achieve spending parity.

This simple example helps illustrate the value of viewing decisions from a consequentialist

perspective, complementing the rule-based, deontological approach that has been the focus

of much past work on algorithmic fairness. Although the extremes of maximizing appear-

ances and requiring strict demographic parity are perhaps reasonable heuristics, they can

obscure the trade-offs inherent to many policy problems.

To extend this example, we also plot points on the curve corresponding to random allocation

(in purple) and equal false negative rates (FNR) between groups (in dark yellow).7 Random

allocation results in demographic parity, but lies below the Pareto frontier, meaning appear-

7In this case, equal FNR means that Pr(π = 0 | Y (0) = 0, Y (1) = 1, G = g) = Pr(π = 0 | Y (0) =

0, Y (1) = 1). That is, among those who would benefit from the assistance, an equal proportion do not

receive it in both groups.
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ance rates are lower than if one were to more judiciously allocate rideshare assistance. The

equal FNR point lies on the curve, meaning it happens to be optimal for a specific choice

of λ. But a rule that simply demands error-rate parity—as opposed to maximizing utility

more directly—can result in a sub-optimal balance between maximizing appearances and

evenly distributing transportation assistance, relative to the underlying preferences of the

policymaker.

5 Learning Optimal Policies

To solve our policy optimization problem, we have thus far assumed perfect knowledge of

f(x, k) = EY [r(x, ak, Y (ak)) | X = x],

for all values of x and k. In particular, we assumed perfect knowledge of the conditional dis-

tribution of potential outcomes, D(Y (ak) | X). In reality, however, f(x, k) must be learned

from observed data. One common approach for estimating the impact of interventions is to

run a randomized controlled trial (RCT) to estimate the effects of actions. In Section 5.1, we

formally analyze RCT data collection strategies, and provide an upper bound on the number

of samples necessary to ensure we can compute a near-optimal allocation strategy for our

desired objective. In Section 5.2, we then present an alternative, contextual-bandit-based

strategy that can often learn optimal policies more efficiently than an RCT by judiciously

exploring the effects of actions. Finally, in Section 5.3, we demonstrate the advantages of

this alternative strategy in an empirically grounded simulation study.

5.1 Sample-Size Bounds for Learning From RCTs

A natural concern for practitioners is whether balancing complicated objectives—like the

competing outcomes highlighted in our utility function in Eq. (2)—requires obtaining sub-

stantially more data than in traditional, single-objective settings. Further, in most domains

of practical interest, individuals are described by a set of features, and it is beneficial to

know how choices about representing these individuals impact the amount of data required.

To address these considerations, we provide upper bounds on the sample size of an RCT

needed to construct near-optimal policies with high probability.8 Our aim in this analysis

8By an RCT, we mean any data collection strategy in which the distribution of actions may depend on

the context but which does not change over time. Our analysis can equivalently be viewed as a simple regret

analysis under the constraint of using an RCT for pure exploration.
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is not to provide tight sample complexity bounds, but rather to examine at a high level

how additional fairness objectives and modeling choices affect the amount of data required

from an RCT. Our results suggest that one may not need much more data to learn a fair

policy—when compared with a policy that solely maximizes reward—and that modeling

assumptions can substantially reduce the amount of data required.

As in Sections 3.2 and 3.3, we assume throughout this section that the state space X is

finite, and that the costs and the distribution of X are known. In practice, information on

the distribution of X can be estimated from historical data, before any interventions are

attempted. Let π∗ be an optimal policy solution, as defined in Eq. (3), with corresponding

utility U(π∗). We define the estimated utility function Û(π) for a particular decision policy

as
Û(π) = EX,Y [r̂(X,π(X), Y (π(X)))]

−
∑
g∈G

λg

∣∣∣EX [c(X,π(X)) | g ∈ s(X)]− EX [c(X,π(X))]
∣∣∣, (6)

where r̂ is the estimated reward function learned from data. Let π̂ be a solution to the

optimization problem in Eq. (3), where we maximize Û(π) instead of U(π). Further, let

r(x, k) = r(x, ak, YX=x(ak)) be the (random) reward if action ak is taken in the context

x, where YX=x(ak) is the (random) potential outcome conditional on the given context.

Note that the randomness in r(x, k) stems entirely from the randomness in the potential

outcomes YX=x(ak).

We present upper bounds on the sample size needed to learn near-optimal policies. Specifi-

cally, for fixed ϵ, δ > 0, we provide sample bounds which ensure the utility gap U(π∗)−U(π̂)

is small with high probability, i.e., P(U(π∗) − U(π̂) < ϵ) > 1 − δ. We prove these bounds

under three different common distributional assumptions on the reward model, described

below.

1. (Tabular Rewards) We assume r(x, k)
d
= f(x, k) + η, where η ∼ σ2-subGaussian and

η is independent across draws of the reward function.

2. (Linear Rewards) We assume there are (known) features ϕ(x, ak) ∈ Rd of the state

and action, and (unknown) parameters θ∗ ∈ Rd such that r(x, k)
d
= ϕ(x, ak)

T θ∗ + η,

where η ∼ σ2-subGaussian and η is independent across draws of the reward function.

3. (Logistic Rewards) We assume there are (known) features ϕ(x, ak) ∈ Rd of the

state and action, and (unknown) parameters θ∗ ∈ Rd such that P(r(x, k) = 1) =

logit−1(ϕ(x, ak)
T θ∗), where the reward is independent across draws.
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Before formally stating our results, we summarize our key findings. First, in the tabular

setting, we show that approximately σ2|A|/(ϵ2pmin) samples are sufficient to ensure the

utility gap is small with high probability, where pmin = minx P(X = x) (NB: the constant

δ appears in lower-order log terms). Our bound thus scales roughly as |X ||A|, the product

of the size of the state space and the size of the action space.

In the tabular setting, in the absence of shared structure, we must separately learn the

effects of each action in each state. However, if we can use a parametric representation of

the reward function, our sample bounds are substantially smaller. In particular, in the linear

case we show that approximately σ2d2/ϵ2 samples are sufficient to ensure the utility gap

is small with high probability, where d is the dimension of the feature space—a significant

improvement over the tabular setting when d2 ≪ |X ||A|. To achieve this bound, we design

the RCT to strategically select actions in each context in a way that efficiently samples the

feature space. Finally, in the logistic case, we similarly establish bounds that scale as a

function of d, though the exact dependence is more complex than in the linear case. Our

analysis accordingly suggests that when the context and action spaces are large, estimating

shared reward structures is likely to be crucial.

For all three of these settings (tabular, linear, and logistic), our sample bounds are identical

whether or not we consider fairness (i.e., regardless of whether λg > 0 for some g or λg = 0

for all g in Eq. (2)). Intuitively, this is the case because the sample complexity is driven

by uncertainty in the rewards, which stems from uncertainty in the potential outcomes.

The fairness expression itself depends only on the allocation across subgroups, which can

be computed exactly given any policy, independent of the estimated rewards. In theory, it

is of course possible that tighter bounds would reveal a gap between the sample complexity

of the settings with and without fairness constraints.

We now present our formal results. Proofs for this section are in Appendix D.

Theorem 1 (Tabular Rewards). Assume the reward is tabular. Suppose we collect n sam-

ples in a round-robin fashion (i.e., for each context x, select the least-sampled action ak in

that context, breaking ties arbitrarily). Then for ϵ > 0, δ > 0, λg ≥ 0, and

n ≥ 8σ2|A|
ϵ2pmin

log
4|X||A|

δ
log

(
16σ2|A|
δϵ2pmin

log
4|X||A|

δ

)
,

we have P(U(π∗)− U(π̂) < ϵ) > 1− δ.

As discussed above, our sample bound in the tabular setting roughly scales linearly with

the product of the size of the covariate space and the action space, which suggests that
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prohibitively large sample sizes may be needed in practice. Our next two theorems show

that significantly fewer samples are sufficient if the reward function is a parametric model.

Theorem 2 (Linear Rewards). Assume the reward is linear with feature representation

ϕ(x, ak) ∈ Rd. For any RCT π used to collect samples, let

Σ(π) = E[ϕ(X,π(X))ϕ(X,π(X))T ]

=
∑
x,k

P(X = x) · P(π(x) = ak) · ϕ(x, ak)ϕ(x, ak)T

be the induced covariance matrix. Also define a problem-dependent constant

ρ0(π) = max
x,k

∥Σ(π)−1/2ϕ(x, ak)∥/
√
d.

Then, we can design a data collection strategy π̃ such that, for any ϵ > 0, δ > 0, λg ≥ 0 and

n ≥ max{6ρ0(π̃)2d log(3d/δ), O
(
σ2d2/ϵ2

)
},

we have P(U(π∗)− U(π̂) < ϵ) > 1− δ.

The quantity ρ0 in the above bound is known as ‘statistical leverage’ [Hsu et al., 2014].

If no prior information is available, we know only that ρ0 ≤ ∥ϕ∥2/
√
λmin(Σ), and, in the

worst case, ρ0 may scale with the condition number of the covariance matrix. However, in

many practical settings ρ0 is not large compared to 1/ϵ2, and so the upper bound scales

like σ2d2/ϵ2.

Finally, given the practical importance of binary rewards, we provide the following upper

bound on sample complexity in the logistic setting.

Theorem 3 (Logistic Rewards). Assume the reward is logistic, and that assumptions D0,

D1, D2, and C of Ostrovskii and Bach [2020] hold (these assumptions define problem-

dependent constants K0,K1,K2, ρ). Define Σ(π) as in Theorem 2 and c =
∑

x P(X =

x)maxk∥ϕ(x, ak)∥Σ(π)−1. Then, for any ϵ > 0, δ > 0, λg ≥ 0 and

n ≥ O

(
max{K4

2 (d+ log
1

δ
), ρK2

0K
2
1d

2 log
d

δ
, (ρ2c2K2

1d log
1

δ
)/ϵ2}

)
we have P(U(π∗)− U(π̂) < ϵ) > 1− δ.

Theorem 3 provides guarantees on the performance of the allocation strategy derived from

using estimated plug-in parameters for the logistic reward model. However, the assumptions

we use to establish this result are quite strong, suggesting there is significant room for similar

results under more relaxed conditions. We discuss the implications of Theorem 3 and the

strength of the assumptions further in Appendix D.
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5.2 Adaptively Learning Fair, Optimal Policies

The prior section suggests the feasibility of solving our desired optimization problem using

parameters estimated from data. However, sample size calculations for RCTs are most

suitable for settings with a fixed budget for experimentation and a strong need for testing

statistical hypotheses posthoc which are most easily done with independently and identically

distributed data9. However, such estimates can be overly conservative and involve deploying

non-reactive data gathering poicies. For example, in our running example of providing

rideshare assistance to public defender clients, if there turns out to be a group of clients

with very small need and benefit from assistance, the RCT will still allocate a proportional

amount of limited resources to such individuals. In contrast to RCTs, contextual bandit

algorithms are often designed to maximize expected utility while learning, which typically

involves estimating the potential performance of each action ak and using that information

to accrue benefits.

To efficiently learn decision policies in the real world, we now outline our procedure to

integrate the LP formulation from Section 3.3 with three common contextual bandit ap-

proaches: ε-greedy, Thompson sampling, and upper confidence bound (UCB), as described

in Algorithm 1.10 At a high level, at each step i, our ε-greedy approach first estimates

f(x, k) using the maximum likelihood estimate of a chosen parametric family, and uses this

estimate to find the optimal policy π∗
i with our LP. Then, with probability 1− ε, we treat

the i-th individual according to π∗
i ; otherwise, with probability ε, we take action ak with a

probability set to meet our budget requirements in expectation. Our Thompson sampling

approach maintains a posterior over the parameters of a model of the potential outcomes

f̂(x, k), samples from this posterior, uses the posterior draw in the LP formulation to com-

pute a policy π∗
i , and then treats the i-th individual according to π∗

i . Finally, under our

UCB approach, we compute π∗
i by solving the LP with an optimistic estimate of f(x, k)

(e.g., using the 97.5th percentile of the posterior of f̂(x, k)).
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Algorithm 1 Policy learning procedure.

1: input: Actions ak, budget b, parity preferences λg, reward function r, covariate distri-

bution P(X = x), group membership function s, bandit algorithm, ℓ

2: initialize: Randomly treat first ℓ people

3: for each subsequent individual i do

4: Set Di := {(Xj , Aj , Yj)}i−1
j=1, where Xj , Aj , and Yj denote the covariates, actions,

and outcomes for previously seen individuals

5: Estimate f(x, a) with a parametric family of functions g(x, a; θ) fit on Di

6: if ε-greedy then

7: f̂(x, a) := g(x, a; θ̂i), where θ̂i is the MLE

8: else if Thompson sampling then

9: f̂(x, a) := g(x, a; θ̂∗i ), where θ̂∗i is drawn from the posterior of θ̂i

10: else if UCB then

11: f̂(x, a) := the α-percentile of the posterior of g(x, a; θ̂i)

12: end if

13: Compute nominal budgets b∗i according to Eq. (E.27)

14: Find solution π∗
i of the LP in Section 3.3 with input values f̂(x, a), s, λg, b

∗
i , and

P(X = x)

15: if ε-greedy & Bernoulli(ε) == 1 then

16: Take random action Ai according to Eq. (E.28)

17: else

18: Take action Ai ∼ π∗
i (Xi)

19: end if

20: Observe outcome Yi

21: end for

5.3 Simulation Study

To evaluate our learning approach above, we conducted a simulation study using data on a

sample of clients served by the Santa Clara County Public Defender Office. In this example,

clients can receive one of three mutually exclusive treatments ak: rideshare assistance, a

9Note that there has been recent interest in developing suitable inference methods for data gathered using

adaptive, multi-armed bandit strategies (e.g. Hadad et al. [2021], Zhang et al. [2021])
10For simplicity, we assume knowledge of the covariate distribution D(X), which is often easily obtained

from historical data, even in the absence of past interventions. If historical data are not available, the

covariate distribution can instead be estimated from the sample of individuals observed during the decision-

making process.
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Figure 3: Mean regret, across 2,000 simulations, incurred by different learning approaches.

We define regret here as the difference between the observed utility and the utility obtained

by an oracle during the same experiment. Uncertainty bands represent 95% intervals for

the mean. We note that the three bandit approaches—ε-greedy, Thompson sampling, and

UCB—incur substantially less regret than the RCT. It is possible to reduce the regret

incurred during an RCT by stopping the RCT early, and following the optimal estimated

policy from that point forward. However, these stop-early RCT approaches produce worse

policies than other approaches (Figure 4).

transit voucher, or no transportation assistance. We fix our average per-person budget to

$5 for this simulation, and assume that round-trip rides cost $5 for every mile between an

individual’s home address and the main courthouse and back. We also limit the client pop-

ulation to white and Vietnamese individuals to reflect the motivating example described in

Section 3.1. The utility of a policy is described by Eq. (2), where we set r(x, a, y) = y and

λg = 0.004. This choice yields an oracle policy that balances between maximizing appear-

ances and achieving parity in per-capita expenditure across groups. The data generating

process for this population and additional experiment parameters are described in detail in

Appendix E.

We compare our contextual bandit approaches against several baselines. First, we com-

pare to an RCT, in which treatment is randomly selected (in accordance with the budget)

throughout the entire experiment. We also include variations on this approach, where we
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Figure 4: Mean performance, across 2,000 simulations, of optimal policies estimated with

data available at each iteration i. Performance is defined as the additional utility obtained

by a policy over a baseline of no treatment for all individuals, with 100% indicating this

quantity for the oracle policy. Uncertainty bands represent 95% intervals around the mean.

UCB and Thompson sampling generate policies that are better than a conventional RCT

at any given iteration i. In contrast, the ε-greedy approach and the stop-early versions of

the RCT generate policies that are slower to (or may never) reach near-oracle performance.

run an RCT on the first n individuals, and then follow the optimal policy estimated at

individual n for the rest of the sample, similar to explore-first strategies. We compare all

approaches against an oracle that can observe the true expected appearance probabilities.

We repeat this evaluation 2,000 times each on 1,000 randomly-selected individuals from our

dataset, and compare the performance of all approaches using two different metrics. Our

main two bandit approaches—Thompson sampling and UCB—not only significantly reduce

regret when compared to an RCT during the training/learning process (Figure 3), but also

learn policies that, if used for future populations, would outperform all other approaches

(Figure 4). In contrast to our two main bandit algorithms, the ε-greedy approach also

manages to reduce regret, but is slower to learn a near-oracle policy. The RCT and its

variations illustrate the limits of the conventional randomized approach. For example, it is

possible to learn a near-oracle policy using a classic RCT, but this incurs substantial regret

during the experiment. Though it is possible to reduce this regret by ending the RCT early,
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Vietnamese spending disparity

With penalty No penalty

Method (λg = 0.004) (λg = 0)

UCB -$2.21 -$3.36
Thompson -$1.21 -$2.19
ϵ-Greedy -$1.29 -$2.38

Table 1: Mean spending disparities by method for Vietnamese clients across 2,000 experi-

ments, including both the main set of simulations (where λg = 0.004) and an alternative set

of simulations (with identical parameters to the main set, except where λg = 0). Disparities

are calculated by comparing average spending on Vietnamese individuals to the $5 average

spending on all individuals (i.e., the target budget). Note that spending disparities are

approximately $1 larger when λg = 0, verifying that the bandit methods we employ in our

simulation learn to reduce spending disparities to maximize the policymaker’s utility.

these alternatives learn poorer-performing policies.

By design, the bandit methods discussed above reduce spending disparities during the course

of the simulation. We demonstrate this by comparing our main simulation to an alternate set

of simulations where λg = 0 (Table 1). For example, with a choice of λg = 0.004, reflecting

a mild preference for more equal spending, we observe that UCB methods spent $2.21 less

on Vietnamese clients than the $5 population average (i.e., the target budget). In contrast,

with a choice of λg = 0 (i.e., preferring policies that simply aim to maximize appearances),

UCB methods spent $3.36 less on Vietnamese clients compared to the population average.

6 Discussion

We have outlined a consequentialist framework for equitable algorithmic decision-making.

Our approach foregrounds the role of an expressive utility function that captures preferences

for both individual- and group-level outcomes. In this conceptualization, we explicitly con-

sider the inherent trade-offs between competing objectives in many real-world problems. For

instance, in our running example of allocating transportation assistance to public defender

clients, there is tension between maximizing appearance rates and ensuring an equitable

distribution of benefits. Popular rule-based approaches to algorithmic fairness—such as
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requiring equal false negative rates across groups—implicitly balance these competing ob-

jectives in ways that may be at odds with the actual preferences of stakeholders. Our

approach, in contrast, requires one to confront the consequences of difficult trade-offs, and,

in the process, may help one improve those decisions.

For a rich class of utility functions, we showed that one can efficiently learn optimal deci-

sion policies by coupling ideas from the contextual bandit and optimization literatures. For

example, with our UCB-based algorithm, we do so by repeatedly solving a linear program

under optimistic estimates of the potential outcomes of actions. In an empirically grounded

simulation study, we showed that this strategy can outperform common alternatives, includ-

ing learning through randomized controlled trials or acting greedily based on the available

information.

In this work, we have assumed access to a well-specified utility function that reflects stake-

holder preferences. In practice, inferring this utility is a complex task in its own right.

For example, challenges may arise from an unwillingness to explicitly state preferences for

trade-offs involving sensitive considerations like demographic parity. There are, however,

several established techniques to elicit multi-faceted preferences less directly. One family

of approaches selects pairs of similar realistic scenarios, asks stakeholders to pick their pre-

ferred outcome, and infers their preferences from these choices [Lin et al., 2020, Fürnkranz

and Hüllermeier, 2010, Chu and Ghahramani, 2005].

Another challenge—particularly relevant in the dynamic setting—is accounting for delayed

outcomes. In our running example, we may choose to offer rideshare assistance to a client

days or weeks before their appointment date. As a result, there may be large gaps between

when an action is taken and when we observe its outcome. One way to address this issue

is through the use of proxies or surrogates, in which intermediate outcomes are used as a

temporary stand-in for the eventual outcome of interest [Athey et al., 2019]. For example,

with rideshare assistance to clients, one might use intermediate responses (like a client’s

confirmation to attend their appointment) as a proxy for appearance. Another strategy is

to reduce the budget for costly actions, effectively limiting the resources spent while waiting

to observe outcomes.

In addition to the above technical considerations, we note some practical limitations in

providing transportation to public defender clients with upcoming court dates. First, in

many circumstances policymakers may not be legally permitted to explicitly use race, eth-

nicity, or other protected attributes when deciding how to allocate limited resources. These
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policymakers may instead focus on other attributes, like geography or socioeconomic sta-

tus, which may be legally or socially more permissible. Second, our motivating example

presupposes that resources are too limited to treat the entire population of interest. If poli-

cymakers had enough funding available to assist an entire population, it may not make sense

to equalize per-capita spending across groups of interest, given that everyone would receive

transportation assistance. Finally, though this study emphasizes the potential benefits of

rideshare assistance for those who have mandatory court dates (e.g., one potential benefit

is avoiding time in jail), a simpler and more effective policy for reducing jail time may be

to discourage judges from issuing bench warrants if clients fail to appear in court. Though

in isolation this policy might result in lower appearance rates, it could be accompanied by

other assistance to offset this adverse outcome, including text message reminders, social

services, or rideshare assistance as we describe here.

Algorithms impact individuals both through the decisions they guide and the outcomes

they engender. Looking forward, we hope our work helps to elucidate the subtle interplay

between actions and consequences, and, in turn, furthers the design and deployment of

equitable algorithms.

7 Acknowledgements

We thank Johann Gaebler, Jonathan Lee, Hamed Nilforoshan, Julian Nyarko, and Ariel

Procaccia for helpful comments. We also thank colleagues at the Santa Clara County Public

Defender Office for their assistance, including Molly O’Neal, Sarah McCarthy, Terrence

Charles, and Sven Bouapha. This work was supported in part by grants from the Stanford

Impact Labs and the Stanford Institute for Human-Centered Artificial Intelligence. Code to

replicate our analysis is available online at: https://github.com/stanford-policylab/

learning-to-be-fair.

References

Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, and Assaf Zeevi. A near-optimal

exploration-exploitation approach for assortment selection. In Proceedings of the 2016

ACM Conference on Economics and Computation, pages 599–600, 2016a.

Shipra Agrawal, Nikhil R Devanur, and Lihong Li. An efficient algorithm for contextual

25

https://github.com/stanford-policylab/learning-to-be-fair
https://github.com/stanford-policylab/learning-to-be-fair


bandits with knapsacks, and an extension to concave objectives. In Conference on Learn-

ing Theory, pages 4–18. PMLR, 2016b.

Muhammad Ali, Piotr Sapiezynski, Miranda Bogen, Aleksandra Korolova, Alan Mislove,

and Aaron Rieke. Discrimination through optimization: How Facebook’s ad delivery can

lead to skewed outcomes. arXiv preprint arXiv:1904.02095, 2019.

Susan Athey, Raj Chetty, Guido W Imbens, and Hyunseung Kang. The surrogate index:

Combining short-term proxies to estimate long-term treatment effects more rapidly and

precisely. Technical report, National Bureau of Economic Research, 2019.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed

bandit problem. Machine learning, 47(2):235–256, 2002.

Ashwinkumar Badanidiyuru, John Langford, and Aleksandrs Slivkins. Resourceful contex-

tual bandits. In Conference on Learning Theory, pages 1109–1134. PMLR, 2014.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness in machine learning. NIPS

tutorial, 1:2, 2017.

Dimitris Bertsimas, Vivek F. Farias, and Nikolaos Trichakis. The price of fairness. Opera-

tions Research, 59(1):17–31, 2011. ISSN 0030364X, 15265463. URL http://www.jstor.

org/stable/23013103.

Su Lin Blodgett and Brendan O’Connor. Racial disparity in natural language processing:

A case study of social media African-American English. In Fairness, Accountability, and

Transparency in Machine Learning (FAT/ML) Workshop, KDD, 2017.

Steven J Brams, Steven John Brams, and Alan D Taylor. Fair Division: From cake-cutting

to dispute resolution. Cambridge University Press, 1996.

Anna Brown, Alexandra Chouldechova, Emily Putnam-Hornstein, Andrew Tobin, and

Rhema Vaithianathan. Toward algorithmic accountability in public services: A quali-

tative study of affected community perspectives on algorithmic decision-making in child

welfare services. In Proceedings of the 2019 CHI Conference on Human Factors in Com-

puting Systems, pages 1–12, 2019.

Emma Brunskill and Lihong Li. The online discovery problem and its application to lifelong

reinforcement learning. CoRR, abs/1506.03379, 2015. URL http://arxiv.org/abs/

1506.03379.

26

http://www.jstor.org/stable/23013103
http://www.jstor.org/stable/23013103
http://arxiv.org/abs/1506.03379
http://arxiv.org/abs/1506.03379


Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in

commercial gender classification. In Conference on fairness, accountability and trans-

parency, pages 77–91, 2018.

Timothy P Cadigan and Christopher T Lowenkamp. Implementing risk assessment in the

federal pretrial services system. Fed. Probation, 75:30, 2011.

William Cai, Johann Gaebler, Nikhil Garg, and Sharad Goel. Fair allocation through

selective information acquisition. In Proceedings of the AAAI/ACM Conference on AI,

Ethics, and Society, pages 22–28, 2020.

Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. Semantics derived automatically

from language corpora contain human-like biases. Science, 356(6334):183–186, 2017.

Ioannis Caragiannis, Christos Kaklamanis, Panagiotis Kanellopoulos, and Maria Ky-

ropoulou. The efficiency of fair division. Theory of Computing Systems, 50(4):589–610,

2012.

Krisda H Chaiyachati, Rebecca A Hubbard, Alyssa Yeager, Brian Mugo, Stephanie Lopez,

Elizabeth Asch, Catherine Shi, Judy A Shea, Roy Rosin, and David Grande. Associa-

tion of rideshare-based transportation services and missed primary care appointments: a

clinical trial. JAMA internal medicine, 178(3):383–389, 2018a.

Krisda H Chaiyachati, Rebecca A Hubbard, Alyssa Yeager, Brian Mugo, Judy A Shea, Roy

Rosin, and David Grande. Rideshare-based medical transportation for medicaid patients

and primary care show rates: a difference-in-difference analysis of a pilot program. Journal

of general internal medicine, 33(6):863–868, 2018b.

Silvia Chiappa and William S Isaac. A causal bayesian networks viewpoint on fairness. In

IFIP International Summer School on Privacy and Identity Management, pages 3–20.

Springer, 2018.

Alexandra Chouldechova and Aaron Roth. The frontiers of fairness in machine learning.

arXiv preprint arXiv:1810.08810, 2018.

Alexandra Chouldechova, Diana Benavides-Prado, Oleksandr Fialko, and Rhema Vaithi-

anathan. A case study of algorithm-assisted decision making in child maltreatment hot-

line screening decisions. In Conference on Fairness, Accountability and Transparency,

pages 134–148. PMLR, 2018.

Wei Chu and Zoubin Ghahramani. Preference learning with gaussian processes. In Pro-

ceedings of the 22nd international conference on Machine learning, pages 137–144, 2005.

27



Yuga J Cohler, John K Lai, David C Parkes, and Ariel D Procaccia. Optimal envy-free

cake cutting. In Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

Sam Corbett-Davies and Sharad Goel. The measure and mismeasure of fairness: A critical

review of fair machine learning. arXiv preprint arXiv:1808.00023, 2018.

Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorith-

mic decision making and the cost of fairness. In Proceedings of the 23rd acm sigkdd

international conference on knowledge discovery and data mining, pages 797–806, 2017.

Amanda Coston, Alan Mishler, Edward H Kennedy, and Alexandra Chouldechova. Counter-

factual risk assessments, evaluation, and fairness. In FAT* ’20: Proceedings of the 2020

Conference on Fairness, Accountability, and Transparency, pages 582–593. Association

for Computing Machinery, 2020.

Bo Cowgill and Catherine E Tucker. Economics, fairness and algorithmic bias. In prepara-

tion for: Journal of Economic Perspectives, 2019.

Bo Cowgill and Catherine E Tucker. Algorithmic fairness and economics. Columbia Business

School Research Paper, 2020. doi: 10.2139/ssrn.3361280.

Amit Datta, Anupam Datta, Jael Makagon, Deirdre K Mulligan, and Michael Carl

Tschantz. Discrimination in online advertising: A multidisciplinary inquiry. In Con-

ference on Fairness, Accountability and Transparency, pages 20–34, 2018.

Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Christian Borgs,

Alexandra Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, and Adam Tauman

Kalai. Bias in bios: A case study of semantic representation bias in a high-stakes setting.

In Proceedings of the Conference on Fairness, Accountability, and Transparency, pages

120–128. ACM, 2019.

Maria De-Arteaga, Riccardo Fogliato, and Alexandra Chouldechova. A case for humans-in-

the-loop: Decisions in the presence of erroneous algorithmic scores. In Proceedings of the

2020 CHI Conference on Human Factors in Computing Systems, pages 1–12, 2020.

Kate Donahue and Jon Kleinberg. Fairness and utilization in allocating resources with

uncertain demand. In Proceedings of the 2020 conference on fairness, accountability, and

transparency, pages 658–668, 2020.

Ethan X Fang, Zhaoran Wang, and Lan Wang. Fairness-oriented learning for optimal

individualized treatment rules. Journal of the American Statistical Association, pages

1–14, 2022.

28



Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkata-

subramanian. Certifying and removing disparate impact. In proceedings of the 21th ACM

SIGKDD international conference on knowledge discovery and data mining, pages 259–

268, 2015.

Laura Fraade-Blanar, Tina Koo, and Christopher M. Whaley. Going to the doctor:

Rideshare as nonemergency medical transportation. Technical report, RAND Corpo-

ration, Santa Monica, CA, 2021.

John J Friedewald, Ciara J Samana, Bertram L Kasiske, Ajay K Israni, Darren Stewart,

Wida Cherikh, and Richard N Formica. The kidney allocation system. Surgical Clinics,

93(6):1395–1406, 2013.
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Appendices

A Absolute Value in an LP Objective

If (v∗, w∗) is a solution to the LP in Eq. (5), then we claim v∗ is a solution to the original

optimization problem in Eq. (4). Let OPTabs and OPTLP denote the optima of Eqs. (4)

and (5) above. Now, since wg = |βT
g v| satisfies the LP constraints, OPTabs ≤ OPTLP.

Conversely, because the LP objective function decreases in wg, if β
T
g v

∗ ≥ 0, then w∗
g = βT

g v
∗

(since βT
g v

∗ ≤ wg, and the other two constraints are immediately satisfied in this case). On

the other hand, if βT
g v

∗ ≤ 0, then w∗
g = −βT

g v
∗ (since βT

g v
∗ ≥ −wg). Thus, in either case,

w∗
g = |βT

g v
∗|, which implies that OPTabs = OPTLP = αT v∗ − λg

∑
g |βT

g v
∗|.

B Group-Specific Threshold Rules

The LP described in Section 3.3 yields a solution to our general decision-making problem,

with an arbitrary number of treatment arms and a potentially complex utility function.

Here we show that in the common case of K = 2 treatments (e.g., with the options cor-

responding to whether or not one provides rideshare assistance), optimal decision policies

can be expressed in a simple, interpretable form. Moreover, for a reward function r that

decomposes into aggregate and individual components—as in Eq. (1)—we can view optimal

policies as group-specific threshold rules.

Theorem 4. In the setting of Section 3.2, suppose K = 2, c(x, a0) = 0, c(x, a1) > 0, and

|s(x)| = 1 (i.e., G partitions X ). Further assume ∆(x) > 0, where

∆(x) = EY [r(x, a1, Y (a1))− r(x, a0, Y (a0)) | X = x].

Then, for group-specific constants tg and pg, there exists an optimal decision policy π∗ of

the form

Pr(π∗(x) = a1) =


1 ∆(x)/c(x, a1) > ts(x)

ps(x) ∆(x)/c(x, a1) = ts(x)

0 otherwise.

(B.1)
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X Pr(X = x) E[Y (0)|X = x] E[Y (1)|X = x] c(x, a1) ∆(x)/c(x, a1) E[Y (2)|X = x] c(x, a2) ∆(x)/c(x, a2)

x1 0.1 0.1 0.6 $10 0.05 0.3 $1 0.2

x2 0.9 0.1 0.2 $10 0.01 0.12 $1 0.02

Table B.1: Setup for counterexample.

Proof. Proof. We start by rewriting the utility U(π) as

U(π) =
∑
x

EY [r(x, a0, Y (a0)) | X = x] · Pr(X = x)

+
∑
x

∆(x) · Pr(π(x) = a1) · Pr(X = x)

−
∑
g∈G

λgδg(π),

where

δg(π) = |EX [c(X,π(X)) | g ∈ s(X)]− EX [c(X,π(X))]|.

Now, for any policy π, we construct a threshold policy π̃ of the form in Eq. (B.1) by assigning

to action a1 those x in each group g having the largest values of ∆(x)/c(x, a1) such that

EX [c(X, π̃(X) | g ∈ s(X)] = EX [c(X,π(X)) | g ∈ s(X)].

By construction, δg(π̃) = δg(π), and∑
x

∆(x) Pr(π̃(x) = a1) Pr(X = x) ≥
∑
x

∆(x) Pr(π(x) = a1) Pr(X = x).

Consequently, U(π̃) ≥ U(π), establishing the result.

In the theorem above, we assume K = 2, which yields a simple threshold solution for the

optimal policy. In general, with K > 2, the structure of the optimal policy can be more

complicated. As a counterexample to the above, suppose K = 3, with a no-cost baseline

action a0, and two costly actions, a1 and a2. We further imagine a population with a single

group (i.e., |G| = 1) with individuals in two contexts characterized by attributes x1 and

x2, and a utility U(π) = EX,Y [Y (π(X))]. Table B.1 lists the responsiveness of each type

of individual to each of the three possible actions, the costs of the two costly actions, and

the relative benefit per dollar of the two costly actions over the free baseline action. In this

setup, we set b = $1, i.e., we can spend, on average, one dollar per person.

For both types of individuals in this example, action a2 has the highest relative benefit per

dollar over the baseline action a0 (highlighted in Table B.1 in gray). As such, one intuitive
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strategy π is to treat every individual with a2, exhausting our budget, yielding

U(π) = (0.3 · 0.1) + (0.12 · 0.9) = 0.138.

However, in this case, a better strategy π∗ is to assign action a1 to all individuals of type

x1, and to assign a0 to all individuals of x2, exhausting our budget and yielding

U(π) = (0.6 · 0.1) + (0.1 · 0.9) = 0.15.

In this setup, even though a2 has the highest relative benefit per dollar, it is low cost in

absolute terms, meaning that we have to treat individuals of both types to exhaust our

budget, including individuals of type x2 who see little benefit to the treatment. As a result,

it is better to exhaust one’s budget on action a1 with individuals of type x1, which sees a

higher return on average than treating the entire population with a2. This type of scenario

demonstrates the need for more complicated solutions to identifying an optimal policy,

justifying the use of a linear program (or other similar approaches).

C Simulation Details for Section 4

We consider a client population with one observable covariate Xi ∼ Unif(0, 1), and two

equally sized groups Gi ∼ Bernoulli(0.5) that have identical appearance rates in the ab-

sence of rideshare assistance, but which, on average, respond differently to the assistance.

Specifically, for actions a ∈ {0, 1}, potential outcomes in this stylized model are generated

according to:

Yi(a) = I(Ui ≤ logit−1((1 + a)Xi + (1−Gi)Xia− 1)),

where I(·) ∈ {0, 1} indicates whether its argument is true, and Ui ∼ Unif(0, 1) is a latent,

individual-level covariate that ensures Yi(0) ≤ Yi(1).

For this example, we use the following utility function:

U(π) = E[Y (π)]− λ
∑

g∈{0,1}

∥D(π | G = g)−D(π)∥1

= E[Y (π)]− 4λ|Pr(π = 1 | G = 1)− Pr(π = 1)|

= E[Y (π)]− 4λ|Pr(π = 1 | G = 1)− b|,

where b = Pr(π = 1) is our budget.
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D Proofs for Section 5.1: Sample Bounds for RCTs

In this section we use the shorthand notation px = P(X = x), πxk = P(π(x) = ak), and

rxk = f(x, k).

First we present a lemma which allows us to bound the utility error by the reward estimation

errors which we will use for the proofs of the theorems.

Lemma 1. We can bound the utility error by

U(π∗)− U(π̂) ≤ 2
∑
x

pxmax
k

|rxk − r̂xk| ≤ 2max
xk

|rxk − r̂xk|.

Proof. Proof. Since π̂ maximizes the estimated utility Û(π) subject to relevant constraints

it follows that Û(π̂) ≥ Û(π∗) (since π̂, π∗ by definition both satisfy the constraints). Thus

U(π∗)− U(π̂) = U(π∗)− Û(π̂) + Û(π̂)− U(π̂) ≤ U(π∗)− Û(π∗) + Û(π̂)− U(π̂). (D.2)

Since the fairness part of the utility function depends only on the policy and not the rewards

it cancels out in Equation D.2 leaving

U(π∗)− Û(π∗) + Û(π̂)− U(π̂) =
∑
x

px
∑
k

π∗
xk(rxk − r̂xk) +

∑
x

px
∑
k

π̂xk(r̂xk − rxk)

(D.3)

≤ 2
∑
x

pxmax
k

|rxk − r̂xk| (D.4)

≤ 2max
xk

|rxk − r̂xk|. (D.5)

Now we leverage the following lemma to prove our sample bounds for RCT’s under our

three reward settings.

Theorem 5 (Restatement of Theorem 1). Assume the reward is tabular and the costs are

known. Let pmin = minx P(X = x). Suppose we collect n samples in a round-robin fashion

(i.e., for each context x, select the least-sampled action ak in that context, breaking ties

arbitrarily). Then for ϵ > 0, δ > 0, λg ≥ 0, and

n ≥ 8σ2|A|
ϵ2pmin

log
4|X||A|

δ
log

(
16σ2|A|
δϵ2pmin

log
4|X||A|

δ

)
,

37



we have P(U(π∗)− U(π̂) < ϵ) > 1− δ.

Proof. Proof. Using a sample mean estimator of reward we have that

r̂xk =
1

nxk

nxk∑
i=1

Rxk,i ∼ subGaussian(
σ2

n2
xk

). (D.6)

Using Hoeffding’s concentration inequality and a union bound we get that if nxk ≥ 8σ2

ϵ2
log 4|X||A|

δ , ∀x, k
then P(maxxk |rxk − r̂xk| < ϵ

2) > 1− δ/2.

Now by Proposition 1 of Brunskill and Li [2015], if n ≥ log(2/(pminδ))/pmin then with

probability at least 1−δ/2 we will observe each context at least once. Thus if we choose our

actions in a round-robin fashion for each context then after n ≥ |A| log(2|A|/(pminδ))/pmin

then with probability at least 1− δ/2 we will observe each context-action pair at least once.

Thus, repeating this nxk times, by a union bound, if we observe at least

n ≥ |A|nxk

pmin
log

2|A|nxk

δpmin
=

8σ2|A|
ϵ2pmin

log
4|X||A|

δ
log

(
16σ2|A|
δϵ2pmin

log
4|X||A|

δ

)
(D.7)

samples then with probability at least 1− δ/2 we will observe at least nxk samples for each

context-action pair.

Finally, by Lemma 1 we see that if maxxk |rxk − r̂xk| < ϵ
2 then U(π∗) − U(π̂) < ϵ. Thus if

Equation D.7 holds then

P(U(π∗)− U(π̂) < ϵ) > P(max
xk

|rxk − r̂xk| <
ϵ

2
) > 1− δ. (D.8)

Now we prove Theorem 2. First, in the following theorem, we prove a result for sample

complexity under an arbitrary RCT data collection strategy π. In the following lemma, we

then show that we can design this RCT π to achieve a bound that scales roughly like d2/ϵ2.

Theorem 6 (Restatement of Theorem 2). Assume the reward is linear. For any RCT π

used to collect samples, let

Σ(π) = E[ϕ(X,π(X))ϕ(X,π(X))T ]

=
∑
x,k

P(X = x) · P(π(x) = ak) · ϕ(x, ak)ϕ(x, ak)T

be the induced covariance matrix. Define a problem-dependent constant

ρ0 = max
x,k

∥Σ(π)−1/2ϕ(x, ak)∥/
√
d.
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Then, we can design a data collection strategy such that, for any ϵ > 0, δ > 0, λg ≥ 0 and

n ≥ max{6ρ20d log(3d/δ), O
(
σ2d2/ϵ2

)
},

we have P(U(π∗)− U(π̂) < ϵ) > 1− δ.

Proof. Proof. Let θ̂ be the linear regression estimator and r̂xk = ⟨ϕ(x, k), θ̂⟩. Then by

Theorem 1 of Hsu et al. [2014] we have that for n ≥ 6ρ20d log
3d
δ ,

∥θ̂ − θ∗∥2Σ(π) ≤
σ2(d+ 2

√
d log 3

δ + 2 log 3
δ )

n
+ o(1/n) (D.9)

with probability at least 1− δ. Now by Lemma 1 and Cauchy-Schwarz, we have that

U(π∗)−U(π̂) ≤ 2
∑
x

pxmax
k

|rxk − r̂xk| ≤ 2∥θ̂− θ∗∥Σ(π)

∑
x

pxmax
k

∥ϕ(x, k)∥Σ(π)−1 . (D.10)

Let c(π) =
∑

x pxmaxk∥ϕ(x, k)∥Σ(π)−1 be a data-dependent constant. From Lemma 2, there

exists a RCT assignment stategy π̃ such that c(π̃) ≤
√
d.

Combining this with Equation D.10 and Equation D.9, we obtain that if we collect at least

n ≥ max

{
6ρ20d log

3d

δ
,O

(
σ2d2

ϵ2

)}
under data collection strategy π̃ then U(π∗)− U(π̂) ≤ ϵ with probability at least 1− δ.

Lemma 2 (Modified Kiefer-Wolfowitz Theorem). Let Π = {π ∈ R|X|∗K |
∑

k πxk = 1, ∀x}
be the set of context-conditioned policy distributions. Then for any context distribution and

feature space, we can design a contextual data collection strategy π̃ ∈ Π such that

c(π̃) =
∑
x

pxmax
k

∥ϕ(x, k)∥Σ(π̃)−1 ≤
√
d.

Proof. Proof. We adapt the Kiefer-Wolfowitz Theorem concerning G-optimal experimental

designs for our setting where we do not have full control over the sampling distribution, but

rather can only control the policy distribution (not the context distribution).

For our proof, define g(π) =
∑

x pxmaxk∥ϕ(x, k)∥2Σ(π)−1 . Our goal will be to show that

minπ∈Π g(π) = g(π̃) = d and by convexity,

c(π̃)2 = (
∑
x

pxmax
k

∥ϕ(x, k)∥Σ(π̃)−1)2 ≤
∑
x

pxmax
k

∥ϕ(x, k)∥2Σ(π̃)−1 = g(π̃) ≤ d. (D.11)
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To show this we will first optimize f(π) = log detΣ(π) and then show that f(π) and g(π)

have the same optimizer π̃ and that f(π̃) = g(π̃) = d. Note that

∂

∂πxk
f(π) =

1

detΣ(π)

∂

∂πxk
detΣ(π) (D.12)

= trace

(
adj(V (π))

detΣ(π)
pxϕ(x, k)ϕ(x, k)

T

)
(D.13)

= trace
(
Σ(π)−1pxϕ(x, k)ϕ(x, k)

T
)

(D.14)

= px∥ϕ(x, k)∥2Σ(π)−1 . (D.15)

Since f is concave, by first order optimality conditions, for any π ∈ Π and π̃ = argmaxπ∈Π f(π),

0 ≥ ⟨∇f(π̃), π − π̃⟩ =
∑
x

px
∑
k

πxk∥ϕ(x, k)∥2Σ(π̃)−1 −
∑
x

px
∑
k

π̃xk∥ϕ(x, k)∥2Σ(π̃)−1 (D.16)

=
∑
x

px
∑
k

πxk∥ϕ(x, k)∥2Σ(π̃)−1 − d (D.17)

since for any π,∑
x

px
∑
k

πxk∥ϕ(x, k)∥2Σ(π)−1 = trace(
∑
x

px
∑
k

πxkϕ(x, k)ϕ(x, k)
TΣ(π)−1) = trace(Id) = d.

(D.18)

Thus letting πxk = 1
{
k = argmaxk′∥ϕ(x, k′)∥Σ(π̃)−1

}
we have that

g(π̃) =
∑
x

pxmax
k

∥ϕ(x, k)∥2Σ(π̃)−1 ≤ d. (D.19)

But it also follows that for any π,

g(π) =
∑
x

pxmax
k

∥ϕ(x, k)∥2Σ(π)−1 ≥
∑
x

px
∑
k

πxk∥ϕ(x, k)∥2Σ(π)−1 = d. (D.20)

Therefore π̃ minimizes g(π) and g(π̃) = d.

We note that if we know the context distribution we can efficiently solve for π∗ since by the

arguments of Lemma 2 we can solve the equivalent optimization problem

max
π

log detΣ(π) (D.21)

s.t. 0 ⪯ π ⪯ 1

where Σ(π) =
∑

x px
∑

k πxkϕ(x, k)ϕ(x, k)
T . This is an example of a determinant maximiz-

ing problem subject to linear matrix constraints, which can be solved efficiently by interior

point methods (Vandenberghe et al. [1998]).
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Theorem 7 (Restatement of Theorem 3). Assume the reward is logistic, the costs are

known, and that the assumptions D0, D1, D2, and C of Ostrovskii and Bach [2020] hold

(these assumptions define problem-dependent constants K0,K1,K2, ρ). Also define Σ and

c as in Theorem 2. Then, for any ϵ > 0, δ > 0, λg ≥ 0 and

n ≥ O

(
max{K4

2 (d+ log
1

δ
), ρK2

0K
2
1d

2 log
d

δ
, (ρ2c2K2

1d log
1

δ
)/ϵ2}

)
we have P(U(π∗)− U(π̂) < ϵ) > 1− δ.

Proof. Proof. By Theorem 3.1 of Ostrovskii and Bach [2020] (in the well-specified case),

for n ≥ O
(
max{K4

2 (d+ log 1
δ ), ρK

2
0K

2
1d

2 log ed
δ }
)
with probability at least 1− δ,

∥θ̂n − θ∗∥2H ≤
K2

1d log
e
δ

n
(D.22)

where H = ∇2Lπ(θ
∗) is the Hessian of the cross-entropy loss evaluated at the true param-

eter. By assumption C of Ostrovskii and Bach [2020], we assume that that the covariance

matrix Σ = Covπ[ϕ(X,A)] is bounded above by H by a data-dependent factor ρ, i.e. that

ρH − Σ is positive semi-definite. Thus by Lemma 1,

U(π∗)− U(π̂) ≤ 2
∑
x

pxmax
k

|rxk − r̂xk| (D.23)

≤ 2∥θ̂n − θ∗∥H
∑
x

pxmax
k

∥ϕ(x, k)∥H−1 (D.24)

≤ 2

√
K2

1d log
e
δ

n

∑
x

pxmax
k

ρ∥ϕ(x, k)∥Σ−1 (D.25)

≤ 2cρ

√
K2

1d log
e
δ

n
. (D.26)

Thus it follows that if n ≥ O
(
max{K4

2 (d+ log 1
δ ), ρK

2
0K

2
1d

2 log ed
δ ,

ρ2c2K2
1d

ϵ2
log e

δ}
)

then

P(U(π∗)− U(π̂) ≤ ϵ) ≥ 1− δ.

We note that the assumptions D1 and D2 are quite restrictive (as explained in Remark 2.2

of Ostrovskii and Bach [2020]). The corresponding constants K1,K2 can depend on the

magnitude true parameter θ∗ and the data collection policy π. The authors also note that

bounding these constants can be non-trivial, even when the context distribution is known.

This makes designing a data collection strategy π that minimizes the higher order terms of

the derived upper bounds much more difficult than in the linear setting, since this includes

K1, ρ, c which all depend on π.
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E Experiment Details for Section 5.3

We define a subpopulation of clients for our simulated experiment from case data at the

Santa Clara Public Defender Office according to the following process. First, we restrict our

population to clients with recorded court dates between January 1st, 2010 and November

15th, 2021. Next, we limit our population to individuals who have stated that their race is

white, or that their ethnicity is Vietnamese, or those who have stated that Vietnamese is

their preferred language. We limit to these demographic groups to reflect the motivating

example from Section 3.1. Finally, for consistency across case types and differences between

court proceedings, we select only the first post-arraignment appearance for all individuals.

Next, we calculate a feature set x for each case describing: (1) whether the client identifies

as Vietnamese; (2) whether the case is a felony; (3) whether the client identifies as male;

(4) the client’s age; (5) the natural log of the distance, in miles, between the client’s home

address and the courthouse, minus the natural log of the maximum allowed distance of 20

miles (so that all distance attributes are negative, with values of higher magnitude being

closer to the courthouse); (6) the number of known failures to appear in the past two years;

and (7) the inverse number of required court appearances in the past two years. We further

restrict the population to only cases which have complete information on all the above

attributes. The above process results in 12,646 example cases for use in our simulation.

With this information, we model the likelihood a client will appear in court with a logistic

regression trained on the above population using the stated feature set. Specifically, we

have:

Pr(Y (0) = 1) ∼ logit−1(βx)

Once constructed, we modify the model to prepare for our simulation. First, we set β0

to zero to set a mean population appearance rate of 50%. Next, we set β1 to 1, which

sets Vietnamese clients as more likely to appear in court, on average. This change—in

addition to the fact that Vietnamese individuals tend to live farther away from court—

magnifies the likelihood of a spending disparity between Vietnamese and white individuals

in our simulation, given that treatment effects would tend to be lower, and costs higher, for

Vietnamese clients. As a result, a preference for spending parity is at tension with simply

allocating assistance to those with the highest treatment effect per dollar.

The predicted appearance probabilities from the model described above serve as the base for

our simulation’s structural equation model. To begin, we define three potential outcomes for

each individual, corresponding to appearance in the absence of assistance (k = 0, i.e., that
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predicted by the above model), appearance if provided with rideshare assistance (k = 1),

and appearance if provided a transit voucher (k = 2). We do so in terms of the following

structural equation:

fY (k, x, u) ∼ 1(u ≤ logit−1(logit(Pr(Y (0) = 1)) +

γ1 · 1(k = 1) +

γ2 · 1(k = 2) · xdist))

where we set γ1 to 4 and γ2 to -0.75. Finally, for a latent variable UY ∼ Unif(0, 1), we

define the potential outcomes:

Y (a) = fY (a,X,UY ).

This structure ensures that Y (0) ≤ Y (1) and that Y (0) ≤ Y (2), meaning that receiving

any form of assistance is always better than no assistance. Further, the type of assistance—

transit voucher or rideshare assistance—that is best for each individual varies across the

population.

As described in the main text, the utility U is defined by Eq. (2), where we set r(x, a, y) = y

and λg = 0.0004. In other words,

U(π) = E[Y (π(X))]

−
∑
g∈G

λg

∣∣∣EX [c(X,π(X)) | g ∈ s(X)]− EX [c(X,π(X))]
∣∣∣.

The first term in U is the expected number of clients that would show up under the policy

π, and the second term captures our parity preferences. The constant λg was chosen so

that the oracle policy balanced allocation between simple appearance maximization and

perfect demographic parity. For the ε-greedy model, we set ε = 0.1. For both UCB and

Thompson sampling, we use the default weakly informative priors provided by the sim

function in arm [Gelman and Su, 2020]. For UCB, we used the 97.5th percentile estimate

of the posterior of g(x, a, θ̂i).

When estimating f(x, a) during policy learning, we use a logistic regression with the same

functional form as the data-generating process above. We started each of our experiments

with a randomly selected warm-up group of 4 people, with at least one male and at least one

Vietnamese client. During this period, the first two clients were assigned to actions k = 1

and k = 2, respectively. The other two individuals were assigned to control, i.e., k = 0.

The treatments during this warm-up period are not included as expenditures against the

overall budget b.
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Figure E.1: Mean spending by method across 2,000 simulations. The budget is illustrated

with a dashed line.

For our simulation, we set a per-person budget of $5. We also set round-trip rideshare costs

at $10 per mile, and daily transit voucher costs at $7.50, reflecting typical prices observed

in Santa Clara county. Because our inferred policies π∗
i evolve over time, they are not

guaranteed to adhere to the budget constraints. To account for this possibility, if we find

ourselves spending more on an action than is budgeted, we gradually lower the nominal

budget for that action until it meets the target budget (and vice versa for underspending).

Specifically, for each iteration i, we compute a new budget b∗i :

b∗i = b · b · (i− 1)∑i−1
j=1 c(xj , Aj)

, (E.27)

where Aj is the action taken on the j-th individual, and b is the target budget. In Figure E.1,

we show that all approaches included in our simulation spend the allowed budget.

For our RCT and ϵ-greedy approaches, care must be taken to define “random selection”

when handling both varying costs and an overall per-person budget. For example, an RCT

that selects all available treatments with equal probability could overshoot the budget if

rides cost $100 on average and the per-person budget is $5. To avoid this outcome, we first

calculate the expected cost of all actions—including both costly and no-cost actions—when

following random allocation, and then calculate the proportion p of individuals to whom
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we can afford to allocate randomly:

p =
b

c̃
where c̃ =

∑
k EX [c(x, ak)]

k
. (E.28)

Once calculated, we randomly select p of the population to receive a random allocation,

and treat the remainder of the population 1− p with the no-cost treatment, which ensures

we meet our budget in expectation.

Our optimization procedure (our linear program) formally relies on having a discrete co-

variate space, but our synthetic population has continuous covariates. To address this

mismatch, we transfer our continuous setting to the discrete setting in two steps. First,

at the start of our experiments, we draw one random sample C of n = 1,000 clients, and

approximate the full population by a discrete distribution over this observed sample, with

each client assigned probability 1/n. Now, the policies we construct (i.e., those produced

by our LP) are technically defined only for individuals having covariates matching those of

a client in the initial sample C. Consequently, when making decisions for a new individual

with covariates x, we act according to the learned policy for the most similar client in C—
among those having the same group membership s(x) as the new client—where similarity is

defined in terms of the estimated reward f̂(x, ak) normalized by the cost of that treatment

c(x, ak). Specifically, for a new client, we define its nearest neighbor NN(x) to be:

NN(x) = argmin
x′∈C

s(x′)=s(x)

∥∥∥∥∥ f̂(x′, ·)c(x′, .)
− f̂(x, ·)

c(x, .)

∥∥∥∥∥
2

.

Then, for any policy π defined on C, we extend it to a policy π̃ on the full population by

setting π̃(x) = π(NN(x)).

45


	Introduction
	Related Work
	Decision-Making as Optimization
	Motivating Example
	Problem Formulation
	Computing Optimal Decision Policies

	Choosing Among Potential Trade-Offs
	Learning Optimal Policies
	Sample-Size Bounds for Learning From RCTs 
	Adaptively Learning Fair, Optimal Policies
	Simulation Study

	Discussion
	Acknowledgements
	Absolute Value in an LP Objective
	Group-Specific Threshold Rules
	Simulation Details for Section 4
	Proofs for Section 5.1: Sample Bounds for RCTs
	Experiment Details for Section 5.3

