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Federated learning

Consider an agent trying to solve a learning problem. It could use local learning
(using only its local data), or federated learning, where multiple agents each learn
models separately and combine parameters to form a global model.

Figure 1: Local learning: Build a
model based on its nj data points.

Figure 2: Federation: Build a model with M−1 other agents,
each with ni for i ∈ [M ] data points. Combine model param-
eters learned on local data.

Federated learning presents a bias-variance trade-off: With federation, there’s more
data (lower variance), but agents could differ from each other (higher bias).
Hospitals have different sizes: Larger hospitals skew the combined model: lower
bias, so lower error. Smaller hospitals see higher bias, so higher error.

Our prior work: Model-sharing Games, Stability,
and Optimality

Previously, we have analyzed federated learning in two related papers. In this work,
we use the model first proposed in “Model-sharing Games”, but ask questions and
derive results completely independent of these prior works.

Model-sharing Games: Analyzing Federated Learning Under Voluntary Partic-
ipation Donahue and Kleinberg, AAAI ’21, https://arxiv.org/abs/2010.00753
In this first paper on federated learning, we use a lens of cooperative game theory to
analyze which federating structures will be stable - where no agent wishes to move
from its current federating coalition to another coalition (that would accept it). We
derive exact expected MSE values for two federating games (linear regression and
mean estimation) and consider three models of federation, offering varying levels
of customization (vanilla federation, coarse-grained, and fine-grained). For each
setting, we derive constructive examples of stable partitions.

Optimality and Stability in Federated Learning: A Game-theoretic Approach
Donahue and Kleinberg, Neurips ’21, https://arxiv.org/abs/2106.09580
In this paper, we consider the relationship between a federating structure’s stability
and its optimality (how low the overall average error is). After giving an efficient,
constructive algorithm for calculating an optimal arrangement, we show that optimal
arrangements are not always stable, but that the worst stable solution has a cost no
more than 9 times that of an optimal arrangement.

This work: federated learning and fairness

In this work, we consider two notions of fairness in federated learning. Both of these
have been described in multiple other papers in the federated learning literature, but
to our knowledge, we are the first paper to formally compare them.
Egalitarian fairness:
The motivating idea is that agents should have error rates that are roughly the same
(error ratio not too high). One motivation for using this notion of fairness is that agents
may have fewer samples for unfair historical reasons: we want to correct for this.

erri(C)

errj(C)
≤ λ ∀i, j ∈ C

In this work, for egalitarian fairness, we prove a tight bound on error ratio for agents
federating together.
Proportional (collaborative) fairness:
The motivating idea is that agents should have error rates that are (inversely) propor-
tional to samples contributed. One motivation for using this notion of fairness is that
we may wish to reward agents who contribute more data.

erri(C)

errj(C)
≈

nj
ni

∀i ∈ C

In this work, for proportional fairness, we give conditions where a variant of propor-
tional fairness is satisfied.

Egalitarian fairness

The main result for egalitarian fairness is Theorem 2, which bounds error ratio between
any two players that are federating together, as a function of the size of the larger
player.

Theorem 2. Any “modular” federation method satisfies the error ratio bound:

erri(C)

errj(C)
≤ 2 · c + 1 ∀i, j ∈ C

given largest player size ≤ c · r (for r noise/bias ratio).

Theorem 3. This bound is tight (up to an additive factor of ϵ).

Definition 1 defines what we mean by “modular”. In the full paper, we show that at least
two federation methods (vanilla federation and fine-grained federation) are modular.

Definition 1. Consider any coalition C with players s, ℓ ∈ C such that ns ≤ nℓ. Then,
a federating method is called modular if it satisfies the following four properties:
Property 1: The worst-case situation for the error ratio (the ratio of the small player’s
error to the large player’s error) is always in the two-player case.
Property 2: The error ratio increases as the large player gets more samples.
Property 3: The error ratio decreases as the small player gets more samples.

Property 4: As ns
nℓ

→ 0, the error ratio converges to the following fraction:
r
nℓ
+2σ2

r
nℓ

.

Proportional fairness

Theorem 4. Optimal fine-grained federation always displays sub-proportionality of
error.

For proportional fairness, our next result shows that vanilla federation could, in
general, result in either sub- or super-proportional fairness.

Lemma 1. There exist cases where a coalition using vanilla federation satisfies
proportional, strict sub-proportional, and strict sup-proportional error.

Table 1 gives an example where two players federating together results in sub-
proportional error for the small player, while Table 2 gives an example where two
players federating together results in super-proportional error for the small player.
However, Theorem 5, below, shows that any federating arrangement with super-
proportional error must be inherently unstable. Specifically, it must fail to be individ-
ually rational: at least one player would prefer to move to local learning.

Theorem 5. Any individually rational coalition using vanilla federation satisfies sub-
proportionality of errors.

Examples

Coalition C errs(C) errl(C)
errs({ns,nℓ})
errl({ns,nℓ})

2 · c + 1
nℓ
ns

{{ns}, {nℓ}} 1.67 0.5 3.33 5 3.33
{ns, nℓ} 1.57 0.49 3.20 5 3.33

Table 1: Example of two-player game with ns = 6, nℓ = 20, with r = 10. Here, federating in
the grand coalition {ns, nℓ} is individually stable (and thus optimal, for weighted error). The grand
coalition satisfies egalitarian fairness (2 · c + 1 bound) and proportional fairness.

Coalition C errs(C) errl(C)
errs({ns,nℓ})
errl({ns,nℓ})

2 · c + 1
nℓ
ns

{{ns}, {nℓ}} 1.67 0.250 6.67 9 6.67
{ns, nℓ} 1.73 0.251 6.89 9 6.67

Table 2: Example of two-player game with ns = 6, nℓ = 40, with r = 10. Here, the grand coalition
fails to be stable, as local learning minimizes weighted error. The grand coalition satisfies egalitarian
fairness (2 · c + 1 bound) but does not satisfy proportional fairness.

Future work

Future work could explore two main avenues:

• Other notions of fairness: for example, an additive version of egalitarian fair-
ness, or proportional fairness based on the quality of data points, rather than
quantity.

• Other federation methods, beyond vanilla and fine-grained.

Github: https://github.com/kpdonahue/model_sharing_games
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