

"You Can't Fix What You Can't Measure"

Privately Measuring Demographic Performance Disparities in Federated Learning

Marc Juarez (<u>marc.juarez@ed.ac.uk</u>) and Aleksandra Korolova (<u>korolova@princeton.edu</u>)

Introduction	Approach	Federated Learning		
Disparate performance of machine learning models across demographic groups can lead to disparate impact.	We must protect both the performance and group membership information, as they are correlated. However, preserving the overall correlation is necessary to ensure high-	Cross-device Federated Learning (CFL) is a popular machine learning paradigm. Because CFL aspires to provide data privacy, the challenges of protecting sensitive attributes are		
Example : when waking up Amazon Echo, False Positive samples are sent to the cloud for	accuracy measurements of the Gap.	even more relevant than in other settings.		
further processing and may contain background	Clients Group membership	RQ3: can existing CFL deployments afford the		

speech. If a group has a higher False Positive Rate (FPR), it is more exposed to surveillance.

However, access to the group membership **attributes** that are needed to identify a nerformance disparity (e.g. ethnicity) is often

f is one of our LDP mechanisms. The clients use f to protect the group membership and the performance information.

We design two novel families of LDP mechanisms by composing LDP primitives:

 \mathcal{M}_{L} and

Theoretical evaluation: bound the error of the $^{\prime}$ (ϵ).

privacy budget required by the mechanisms?

We show that the size of current CFL

deployments (e.g., by Apple and Google)

allows for accurate measurements of the

Performance Gap even under the strong

privacy guarantees of LDP.

		\mathcal{M}_{R}			\mathcal{M}_{L}	
K	$\alpha = 10^{-1}$	$\alpha = 10^{-2}$	$\alpha = 10^{-3}$	$\alpha = 10^{-1}$	$\alpha = 10^{-2}$	$\alpha = 10^{-3}$
10^{5}	1.86	29.78	30.45	2.56	17.89	178.89
10^{6}	0.63	34.02	29.18	0.71	6.32	56.57
10^{7}	0.23	1.86	28.60	0.21	2.56	17.89
10^{8}	0.08	0.63	35.93	0.07	0.71	6.32
10^{9}	0.02	0.23	1.86	0.02	0.21	2.56

Minimum required privacy budget (ϵ) to bound the error by α , given K clients, with 0.99 probability. Highlighted are the ϵ 's that are considered reasonable in common LDP applications

unavailable for privacy reasons.	mechanisms as a function of privacy (ϵ).			
Objective & Impact	Comparison between M's			
Prior works overlook the measurement of	RQ1: best method given a privacy budget?			
the disparities: they focus on correcting	The MSE is small for typical privacy budgets.			
them once they know they exist. But	No mechanism is optimal: it depends on the			
enabling practical measurements of the	privacy regime.			
disparities is the first step toward identifying	* 10^0 \mathcal{M}_{L} (k=2)			
and fixing the issues—You Can't Fix What	$\begin{cases} 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-4} \\ 10^{-5} \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$			
you Can't Measure!				
Definition (Performance Gap): the absolute	ϵ			

Upper and lower bounds of the estimators' MSE for *different overall privacy budgets.*

K for existing CFL deployments:

- 10⁸ active Siri clients^{1.}
- 10⁹ install of Gboard in Android².

¹Apple Newsroom, 2018 ²Google Play Store, 2021

Conclusion

We explore the space of LDP-based

solutions to measure the disparate

performance of machine learning models while

preserving the privacy of the group

membership information.

Specifically, the sheer number of clients in **CFL**

performance metric (e.g., FPR):

 $\Delta m := |FPR_A - FPR_B|$

difference between group averages of a

Problem statement: how can we measure

the Performance Gap, while protecting the **privacy** of the group membership attributes?

Objective: design **Local Differential**

Privacy (LDP) mechanisms to measure the

Performance Gap.

RQ2: effect of group size ratio?

For common group ratios: 1:1, 1:2, and 1:10

(e.g., race, sex), the mechanisms maintain a small MSE.

Upper bound of the MSE of M_R (left) and M_L (right)

for different group ratios.

offers a unique opportunity to measure

performance disparities, thus raising

awareness of new issues and driving work

towards fixing them.

We believe our work paves the way for **service**

providers, regulatory agencies, or even

coalitions of users to make measurements of

the Performance Gap and **uncover existing**

performance disparities in deployed models.