

PROPX Fair and Efficient Allocation of Indivisible Chores

H. Aziz, B. Li, H. Moulin, X. Wu, and X. Zhu

Computer Science and Engineering School, UNSW Sydney, Australia

Motivations and Questions

	Vacuum	Laundry	Wash Dishes	Trash to Curb
Alice	-0.15	-0.45	-0.27	-0.13
Bob	-0.50	-0.13	-0.35	-0.02
Celine	-0.68	-0.07	-0.05	-0.20

- Four indivisible chores to be fully allocated to three people.
- Each person has their own valuation on the chores.

Question: How do we allocate these indivisible chores fairly and efficiently?

[Fairness Concept] Proportional up to any item (PROPX): Every agent i's utility is at least some portion of $u_i(0)$ after removing one chore.

[Efficiency Concept] Pareto Optimal (PO): No other allocations can strictly increase some clients' utility without decreasing any other's utility.

Pareto Improvements that Preserve PROPX (resolving trading cycles)

Trading graph: G(X) of an allocation X.

Vertices: Each chore in *O* is a vertex.

Edges: For any two vertices o and o', there is a directed edge from o to o' if $u_i(o') \ge u_i(o)$ where $o \in X_i$ and $o' \notin X_i$. The edge is strict if $u_i(o') > u_i(o)$.

Trading cycle: a cycle C in G(X) containing at least one strict edge. **Resolving a trading cycle**: Allocation Y is a result of resolving trading cycle C if for each edge $(o, o') \in C$, it holds that $Y_i = (X_i \setminus \{o\}) \cup \{o'\}.$

(Each agent involved in a trading cycle gives away a chore they hate more and receives a chore they hate less.)

Our Model

- m indivisible chores in set O.
- n asymmetric agents in set N, each $i \in N$ has a weight $b_i > 0$ and
- Each agent $i \in N$ has an additive utility function $u_i: 2^O \to \mathbb{R}^- \cup \{0\}$.
- An allocation $X = (X_1, ..., X_n)$ where X_i is the allocated set of chores to agent i.

Our Approach

- Compute a PROPX allocation in polynomial time.
- Given a PROPX allocation, perform a series of Pareto improvement (resolving trading cycles) over it that preserve PROPX until it is PO.

Our Results

- The process of resolving trading cycles will terminate in polynomial time.
- [Our approach may not work] Starting with a PROPX allocation, the process of resolving trading cycles may terminate before reaching a PO allocation.
- [PROPX and PO with more restrictions to make our approach work] To have restricted utility functions:

An allocation X is not PO with respect to

- 1. lexicographic preferences
- 2. bivalued preferences

if and only if there exists a trading cycle in G(X).

For lexicographic and bivalued utilities, there exists a polynomial-time algorithm that computes an allocation that is both PROPX and PO even for asymmetric weights.