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Motivations and Questions Our Model

Our Approach

Trading graph: 𝐺(𝑋) of an allocation 𝑋.
Vertices: Each chore in 𝑂 is a vertex.
Edges: For any two vertices 𝑜 and 𝑜′, there is a directed edge from 
𝑜 to 𝑜′ if 𝑢! 𝑜′ ≥ 𝑢! 𝑜 where 𝑜 ∈ 𝑋! and 𝑜" ∉ 𝑋!. The edge is 
strict if 𝑢! 𝑜′ > 𝑢! 𝑜 .
Trading cycle: a cycle 𝐶 in 𝐺(𝑋) containing at least one strict edge.
Resolving a trading cycle: Allocation 𝑌 is a result of resolving 
trading cycle 𝐶 if for each edge 𝑜, 𝑜" ∈ 𝐶, it holds that 

𝑌! = 𝑋! \ 𝑜 ∪ 𝑜" .
(Each agent involved in a trading cycle gives away a chore they 
hate more and receives a chore they hate less.)

Pareto Improvements that Preserve PROPX 
(resolving trading cycles) 

[Fairness Concept] ProporAonal up to any item (PROPX): Every 
agent 𝑖's uAlity is at least some porAon of 𝑢!(𝑂) aFer removing 
one chore.

[Efficiency Concept] Pareto OpAmal (PO): No other allocaAons 
can strictly increase some clients’ uAlity without decreasing any 
other’s uAlity.

Our Results

• Four indivisible chores to be fully allocated to three people.

• Each person has their own valuation on the chores.

Question: How do we allocate these indivisible chores fairly and 
efficiently?

• 𝑚 indivisible chores in set 𝑂. 

• 𝑛 asymmetric agents in set 𝑁, each 
𝑖 ∈ 𝑁 has a weight 𝑏! > 0 and 
∑!∈$ 𝑏! = 1 .

• Each agent 𝑖 ∈ 𝑁 has an additive 
utility function 𝑢!: 2% → ℝ& ∪ 0 .

• An allocation 𝑋 = 𝑋', … , 𝑋(
where 𝑋! is the allocated set of 
chores to agent 𝑖.

• Compute a PROPX allocation in 
polynomial time.

• Given a PROPX allocation, perform 
a series of Pareto improvement 
(resolving trading cycles) over it 
that preserve PROPX until it is PO.

• The process of resolving trading cycles 
will terminate in polynomial time.

• [Our approach may not work] Starting 
with a PROPX allocation, the process of 
resolving trading cycles may terminate 
before reaching a PO allocation.

• [PROPX and PO with more restrictions 
to make our approach work] To have 
restricted utility functions:

An allocation 𝑋 is not PO with 
respect to 

1. lexicographic preferences 

2. bivalued preferences

if and only if there exists a trading 
cycle in 𝐺 𝑋 . 

• For lexicographic and bivalued utilities, 
there exists a polynomial-time 
algorithm that computes an allocation 
that is both PROPX and PO even for 
asymmetric weights.


