
PROPX Fair and Efficient Allocation of 
Indivisible Chores

H. Aziz, B. Li, H. Moulin, X. Wu, and X. Zhu

Computer Science and Engineering School, UNSW Sydney, Australia

Motivations and Questions Our Model

Our Approach

Trading graph: 𝐺(𝑋) of an allocation 𝑋.
Vertices: Each chore in 𝑂 is a vertex.
Edges: For any two vertices 𝑜 and 𝑜′, there is a directed edge from 
𝑜 to 𝑜′ if 𝑢! 𝑜′ ≥ 𝑢! 𝑜 where 𝑜 ∈ 𝑋! and 𝑜" ∉ 𝑋!. The edge is 
strict if 𝑢! 𝑜′ > 𝑢! 𝑜 .
Trading cycle: a cycle 𝐶 in 𝐺(𝑋) containing at least one strict edge.
Resolving a trading cycle: Allocation 𝑌 is a result of resolving 
trading cycle 𝐶 if for each edge 𝑜, 𝑜" ∈ 𝐶, it holds that 

𝑌! = 𝑋! \ 𝑜 ∪ 𝑜" .
(Each agent involved in a trading cycle gives away a chore they 
hate more and receives a chore they hate less.)

Pareto Improvements that Preserve PROPX 
(resolving trading cycles) 

[Fairness Concept] ProporAonal up to any item (PROPX): Every 
agent 𝑖's uAlity is at least some porAon of 𝑢!(𝑂) aFer removing 
one chore.

[Efficiency Concept] Pareto OpAmal (PO): No other allocaAons 
can strictly increase some clients’ uAlity without decreasing any 
other’s uAlity.

Our Results

• Four indivisible chores to be fully allocated to three people.

• Each person has their own valuation on the chores.

Question: How do we allocate these indivisible chores fairly and 
efficiently?

• 𝑚 indivisible chores in set 𝑂. 

• 𝑛 asymmetric agents in set 𝑁, each 
𝑖 ∈ 𝑁 has a weight 𝑏! > 0 and 
∑!∈$ 𝑏! = 1 .

• Each agent 𝑖 ∈ 𝑁 has an additive 
utility function 𝑢!: 2% → ℝ& ∪ 0 .

• An allocation 𝑋 = 𝑋', … , 𝑋(
where 𝑋! is the allocated set of 
chores to agent 𝑖.

• Compute a PROPX allocation in 
polynomial time.

• Given a PROPX allocation, perform 
a series of Pareto improvement 
(resolving trading cycles) over it 
that preserve PROPX until it is PO.

• The process of resolving trading cycles 
will terminate in polynomial time.

• [Our approach may not work] Starting 
with a PROPX allocation, the process of 
resolving trading cycles may terminate 
before reaching a PO allocation.

• [PROPX and PO with more restrictions 
to make our approach work] To have 
restricted utility functions:

An allocation 𝑋 is not PO with 
respect to 

1. lexicographic preferences 

2. bivalued preferences

if and only if there exists a trading 
cycle in 𝐺 𝑋 . 

• For lexicographic and bivalued utilities, 
there exists a polynomial-time 
algorithm that computes an allocation 
that is both PROPX and PO even for 
asymmetric weights.


