
Dynamic Interventions for Networked Contagions
Marios Papachristou 1 Sid Banerjee 1 Jon Kleinberg 1

1Cornell University

Problem

We study designing dynamic intervention policies for minimizing networked defaults
in financial networks under the Eisenberg‐Noe model.
Our framework can be used to tackle problems regarding general dynamic
allocations subject to contagion.

Setting: We consider a financial network of n entities with liabilities to one another (in
the form of a graph) where nodes can be solvent – i.e. pay all of their debts – or default
in which case they proportionaly pay off their debts.

The financial network evolves over time and unmet debts are getting carried‐over to the
next round. Most existing works (e.g. [4, 2, 3]) consider a static (one‐shot) setting.

Applications: Our framework can be used beyond designing dynamic allocation poilicies
in financial networks. More specifically, a dynamic supply‐demand network that experi‐
ences shocks and resources are to be allocated can be modeled with our framework.

Examples: ridesharing, resource allocation (e.g. CPUs) in computer networks, financial
networks, ad placement, influence maximization

Setup

Design: We consider a dynamic version of the Eisenberg‐Noe [1] model of financial
network liabilities, and use this to study the design of external intervention policies.
We formulate the dynamic contagion problem as a Markov Decision Process (MDP)
evolving in an uncertain environment.
Financial Environment: We have a set [n] = {1, . . . , n} of nodes and the system
evolves in T rounds. Each node has
Instantaneous assets c(t) ≥ 0.
Instantaneous external liabilities b(t) > 0.
Instantaneous internal liabilities {ℓij(t)}j∈[n] towards other nodes.

These assets and liabilities evolve as a Markov Chain u(t) = (b(t), c(t), ℓ(t)).
Liabilities: Each node clears (pays‐off) P̃i(t − 1) ∈ [0, Pi(t − 1)] liabilities from the
previous round. The total liabilities from i to j at round t are

pij(t) = ℓij(t)︸ ︷︷ ︸
instantaneous liabilities

+ pij(t − 1)
(

1 − P̃i(t − 1)
Pi(t − 1)

)
︸ ︷︷ ︸

liabilities accrued from previous round

and the total liabilities of each node are
Pi(t) = bi(t) + ∑

j∈[n] ℓij(t) + (Pi(t − 1) − P̃i(t − 1)) > 0.
The relative liabilities between i and j at time t are given as aij(t) = pij(t)

Pi(t) , and the
relative liability matrix equals A(t) = {aij(t)}i,j∈[n].
The financial connectivity of each node is βi(t) = ∑

j∈[n] aij(t) < 1.

Interventions

Fractional interventions: A planner has a budget B (which replenishes at each round)
and funds every node with zi(t) ∈ [0, Li] resources, where Li ≥ 0. The system responds
with a fixed point

P̃ (t) = P (t) ∧ [AT (t)P̃ (t) + c(t) + z(t)] (1)

This sequence fixed points is unique because of the assumption βi(t) < 1 for all i ∈
[n], t ∈ [T ].
The planner observes a reward R(t) = 1T P̃ (t). The objective of the planner is to find the
optimal policy such that

max
z(t)

∑
t∈[T ]

1T P̃ (t) s.t. P̃ (t) ≥ 0, P̃ (t) = P (t) ∧ [AT (t)P̃ (t) + c(t) + z(t)], z(t) ∈ [0, L], 1Tz(t) ≤ B (2)

Discrete interventions: The interventions can also be discrete, i.e. each node i can get
resources zi(t) ∈ {0, 1, 2, . . . , Li} for some Li ∈ N. The optimization problem remains
the same with the only change that now interventions are discrete.

Ridesharing Example

Environment
Vertices: neighborhoods of a borough (e.g. Manhattan)
Outside network: other boroughs
ℓij(t) = # of rides requested from i to j
bi(t) = # of rides requested from outside boroughs
ci(t) = # of incoming rides & shocks (e.g. traffic jams)

Allocations
z(t) = # allocated vehicles at each neighborhood
L = max # of vehicles that can be allocated in a neighborhood
B = total # of vehicles

P̃i(t) = # of vehicles relocated from neighborhood i

Figure 1. Setting.

Algorithms & Theoretical Results

Fractional interventions: We prove that the optimization problem defined in (2) can be
efficiently solved by sampling realizations of the financial environment u(t) and solving T
Linear Programs (LPs) for each sample path.

Discrete interventions: The discrete allocation problem is NP‐Hard even for the
static setting as proven in [4]. For the dynamic intervention scenario, we provide
an approximation algorithm (SOL) based on solving the fractional LPs and random‐
ized rounding of the solutions such that the value function VSOL satisfies E[VSOL] ≥(
1 − supu(1:T )∈U maxi∈[n],t∈[T ],u∈ βi(t)

)
· E[VOPT ] where E[VOPT ] is the expected value func‐

tion of the optimal policy.

Fairness

We can equitably distribute resources by constraining the generalizedGini coefficientmea‐
sured on a graph sequence {Ht}t∈[T ] (which could be the complete graph, the financial
network G, etc.)

GC(t; Ht) =
∑

(i,j)∈E(Ht) wij(t)|zi(t) − zj(t)|∑
i∈[n],j∈[n] zi(t)(wij(t) + wji(t))

≤ g(t) for some sequence g(t) ∈ [0, 1]

We can extend the sequence of LPs of (2) to solve the clearing problem subject to fairness
constraints.

Experiments

Datasets: We experiment with a variety of results: synthetic data, ridesharing data, data
from Venmo, and data derived from cellphone mobility data (SafeGraph)

(a) Payments (Li = B = 50) (b) Interventions (Li = B =
50)

(c) Payments (Li = B = 100) (d) Interventions (Li = B =
100)

Figure 2. Fractional Interventions for Synthetic Core‐periphery Data (a‐b) and Venmo (c‐d).

(a) Payments (B = 100, Li =
10)

(b) Interventions
(B = 100, Li = 10)

(c) Payments
(B = 500K, L custom)

(d) Interventions
(B = 500K, L custom)

Figure 3. Discrete Interventions for TLC FHV Data (a‐b) and SafeGraph Data (c‐d).

Fairness Constraint Synthetic TLC Venmo Safegraph
Budget B 50 100 50 500K

Spatial GC (wij(t) = aij(t)) 1.001 1.007 1.019 1.037
Standard GC (wij(t) = 1{i ̸= j}) 1.011 1.009 1.017 1.102

Table 1. Price of Fairness. We set g(t) = 0.5. (a) No Fairness (b) Spatial GC Fairness (g(t) =
0.5)

Figure 4. Relation between the total payments of nodes and
the total interventions received. We use L = B · 1.
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Setting. Problem setting.



Fractional Interventions for Synthetic Core-periphery Data (a-b) and Venmo (c-d). The figure shows the fractional allocations and the clearing payments for the top-5 nodes (in terms of clearing payments) for two datasets. The first dataset is synthetic core-periphery data and the second dataset is data collected from Venmo.



Discrete Interventions for TLC FHV Data (a-b) and SafeGraph Data (c-d). The figure shows the discrete allocations and the clearing payments for the top-5 nodes (in terms of clearing payments) for two datasets. The first dataset is from ridesharing data from the NYC Taxi and Limousine Commission and the second dataset is data collected from SafeGraph.



Price of Fairness. We set g(t) = 0.5. Price of fairness for the standard Gini coefficient and the spatial Gini coefficient for four datasets and varying budgets. In all cases, the price of fairness is close to one, meaning that we can achieve an almost optimal fairness/welfare relation.



Relation between the total payments of nodes and the total interventions received. We use L = B 1. The figure shows how the bailouts and the total payments are related after an intervention on the Venmo dataset for no fairness and spatial fairness constraints. Enforcing fairness constraints reduces the Pearson Correlation Coefficient between the two variables from 0.61 to 0.522.
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