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1. Extending linear programming 
approach to a broader range of 
firm preferences

2. Extending results to setting 
when preferences are not 
quasi-linear

3. Developing mechanisms that 
are incentive compatible in 
addition to preserving stability

Introduction and Motivation
• Many two-sided matching markets with 

transferable utilities, e.g., labor or rental 
housing markets, are subject to distributional 
constraints

• Prior work on matching under constraints has 
mainly focused on the non-transferable utility 
setting

• We study conditions on the constraint structure 
under which equilibria exist in the 
transferable utility setting

Theorem (Existence of Stable 
Arrangement for One Firm):
In a one firm setting, stable 

arrangements exist 
irrespective of the nature of 
the constraint structure or 

agent’s preferences.

Substitutes condition: If the 
wage for one worker is increased, 
the demand for all other workers 

should weakly increase

Example where Substitutes Condition is Violated
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Theorem (Linear Programming and Stable Arrangements):
If the distributional constraints form a polymatroid (or hierarchy), 
then there exists a stable arrangement, and it can be computed in 

polynomial time using linear programming.

Proposition: Under general constraints, stable arrangements 
may not exist, even if firms have linear preferences

Hierarchy/Polymatroid Not a Hierarchy/Polymatroid

Hierarchy: For all sets of workers 𝑆, 𝑆! ∈ 𝐻", either 𝑆 ⊆ 𝑆′, 𝑆! ⊆ 𝑆
or 𝑆 ∩ 𝑆! = ∅

Theorem (Efficiency of Stable 
Arrangements): If a feasible arrangement is 
stable, then the corresponding assignment is 

efficient. 

3. Efficiency: An assignment is efficient if it 
maximizes the total match value among all 

feasible assignments

An arrangement is specified by an assignment 𝑿
and salaries 𝒔" "∈$

, where F is the set of firms

Key Properties
1. Feasibility: An arrangement is feasible if the 

assignment 𝑿 satisfies the distributional constraints
2. Stability: No firm and feasible group of 

workers can form a coalition, and all become 
better off by deviating

Definitions

Future Work

Stable Arrangements for One Firm Setting
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𝑎(": Value of firm 𝑓 for worker 𝑤
𝑐(": Value of worker𝑤 for firm 𝑓
𝛼(" = 𝑎(" + 𝑐(": Total Match 
Value of worker-firm pair 𝑤-𝑓

Total Match Value

Model

Payoffs

Worker Payoff on matching with 𝑓:
𝑢! = 𝑎!" + 𝑠!"

Firm Payoff on matching with 
feasible set of workers 𝐷 ∈ 𝑇":

𝑣" = 6
(∈)

(𝑐(" − 𝑠(")

Stable Arrangements in Multiple Firm Setting

Takeaway: Stable arrangements 
exist even when substitutes 

condition is violated

Linear Programming approach can be extended to lower bound 
quotas under a slight modification to the stability notion


