

Matching with Transfers under Distributional Constraints Devansh Jalota¹, Michael Ostrovsky², Marco Pavone³

¹ Institute for Computational and Mathematical Engineering, Stanford University ² Graduate School of Business, Stanford University

³ Department of Aeronautics and Astronautics, Stanford University

Introduction and Motivation	Definitions	Model
 Many two-sided matching markets with transferable utilities, e.g., labor or rental housing markets, are subject to distributional 	An arrangement is specified by an assignment <i>X</i> and salaries $\{s_f\}_{f \in F}$, where F is the set of firms	Total Match Value Workers w
constraints	Key Properties	
 Prior work on matching under constraints has mainly focused on the non-transferable utility setting 	1. Feasibility : An arrangement is feasible if the assignment <i>X</i> satisfies the distributional constraints	Firm f α_{11}
• We study conditions on the constraint structure	2. Stability : No firm and <i>feasible</i> group of	

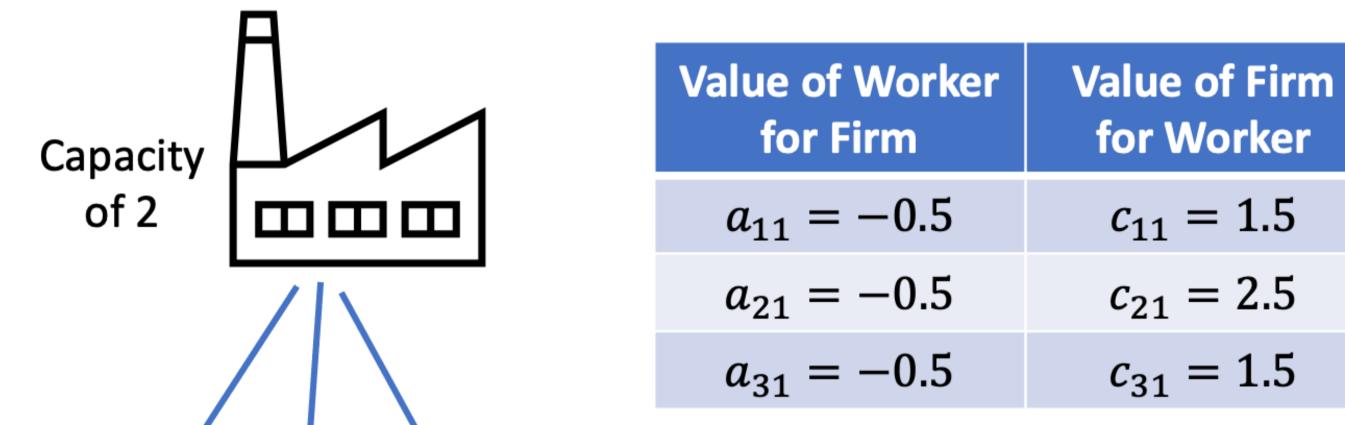
workers can form a coalition, and all become better off by deviating **3. Efficiency**: An assignment is *efficient* if it maximizes the total match value among all *feasible* assignments
<u>Theorem (Efficiency of Stable</u>
<u>Arrangements</u>): If a feasible arrangement is stable, then the corresponding assignment is *efficient*.

transferable utility setting

under which equilibria exist in the

Stable Arrangements for One Firm Setting

Example where Substitutes Condition is Violated



Substitutes condition: If the wage for one worker is increased, the demand for all other workers should weakly increase

Theorem (Existence of Stable Arrangement for One Firm): In a one firm setting, stable

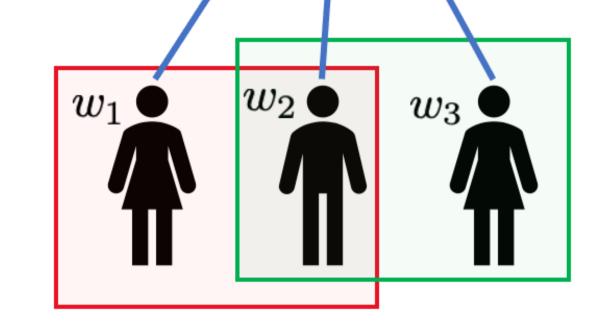
 a_{wf} : Value of firm f for worker w c_{wf} : Value of worker w for firm f $\alpha_{wf} = a_{wf} + c_{wf}$: Total Match Value of worker-firm pair w-f

 α_{2}

Payoffs

Worker Payoff on matching with f: $u_w = a_{wf} + s_{wf}$ Firm Payoff on matching with feasible set of workers $D \in T_f$: $v_f = \sum (c_{wf} - s_{wf})$

Future Work



Constraints

 $x_{w_1,f_1} + x_{w_2,f_1} \le 1$

 $x_{w_2,f_1} + x_{w_3,f_1} \le 1$

Salary Profile 1	Salary Profile 2
$s_{11} = 0.5$	$s'_{11} = 1.1$
$s_{21} = 1$	$s'_{21} = 1$
$s_{31} = 0.5$	$s'_{31} = 0.5$

Increasing the salary of worker one

decreases firm's demand for worker three

arrangements exist irrespective of the nature of the constraint structure or agent's preferences.

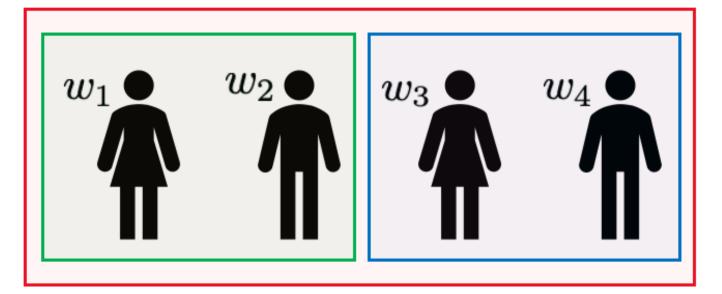
Takeaway: Stable arrangements exist even when substitutes condition is violated

- Extending linear programming approach to a broader range of firm preferences
- Extending results to setting when preferences are not quasi-linear
- 3. Developing mechanisms that are incentive compatible in addition to preserving stability

Stable Arrangements in Multiple Firm Setting

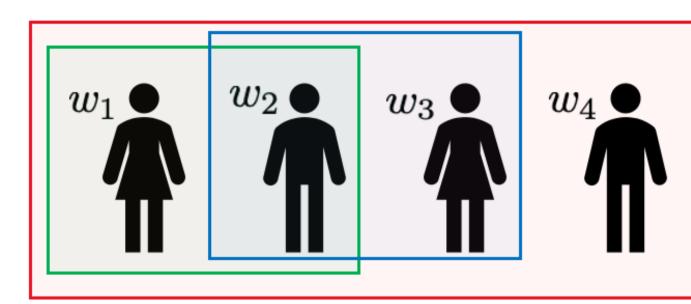
 $\begin{array}{l} \underline{Proposition:} \ Under \ general \ constraints, \ stable \ arrangements \\ may \ not \ exist, \ even \ if firms \ have \ linear \ preferences \\ \hline max \ max \ exist, \ even \ if firms \ have \ linear \ preferences \\ \hline \mathbf{X} \in \mathbb{R}^{|W| \times |F|} \\ \mathrm{s.t.} \qquad \begin{array}{l} U(\mathbf{X}) = \sum_{w \in W} \sum_{f \in F} \alpha_{w,f} x_{w,f}, \\ \sum_{f \in F} x_{w,f} \leq 1, \quad \forall w \in W, \\ \hline \mathbf{Value} \\ \hline \end{array} \\ \begin{array}{l} \text{S.t.} \\ \hline \ \sum_{f \in F} x_{w,f} \leq 1, \quad \forall w \in W, \\ \hline \ \ \text{Constraints} \end{array} \\ \end{array}$

Hierarchy/Polymatroid



Constraints

Not a Hierarchy/Polymatroid



Constraints

Theorem (Linear Programming and Stable Arrangements):

If the distributional constraints form a polymatroid (or hierarchy), then there exists a stable arrangement, and it can be computed in polynomial time using linear programming. **Hierarchy**: For all sets of workers $S, S' \in H_f$, either $S \subseteq S', S' \subseteq S$ or $S \cap S' = \emptyset$

Linear Programming approach can be extended to **lower bound quotas** under a slight modification to the stability notion