

Introduction and Motivation

- Sequential resource allocation decisions in a high-stal
- **Evolving social contexts** as resources are allocated
- Dynamic moral judgments/ethical preferences: w **prioritized** given histories and future implications?
- Long-term policy: stir society towards long-term fai
- This work: a human-in-the-loop approach to capt dynamic ethical preferences toward allocation policies how moral judgments evolve with decision-making c
 - Design a MDP model to represent sequential resou moral preferences captured in the MDP's reward fu
 - Elicit moral judgment through active learning of rew

Markov Decision Process (MDP)

- MDP model: $\langle S, A, P, R \rangle$
- State $s_t = (s_{t,1}, \dots, s_{t,n})$: time t's state of affairs on
- Action $a_t = (a_{t,1}, \dots, a_{t,n})$: time t's allocation decise
- **Transition probability** $P(s_{t+1}|s_t, a_t)$: likelihood o to s_{t+1} from taking action a_t at state s_t .
- **Reward** $R(s_t; \theta)$: cumulative state reward.
- An allocation policy \rightarrow MDP trajectory, $\tau = (s_1, a_1, ..., a_n)$ \rightarrow cumulative policy reward $R(\tau; \theta) = \sum \gamma^{t-1} R(s_t; \theta)$
- Moral judgments regarding an allocation policy: how the policy leads to on the MDP.
- Moral preferences captured in parameters $\boldsymbol{\theta}$ of reward function

Active Learning of Moral Preferences

- Bradley-Terry choice model for comparing policies:
- Two policies lead to trajectories τ_1, τ_2
- Likelihood of viewing τ_1 as more morally desirable than τ_2 is $P(\tau_1 \succ \tau_2 | \boldsymbol{\theta}) = \exp R(\tau_1; \boldsymbol{\theta}) / (\exp R(\tau_1; \boldsymbol{\theta}) + \exp R(\tau_2; \boldsymbol{\theta}))$

- A user's true moral preference is $\boldsymbol{\theta}^*$
- Iterative interaction with the user
- 1) Query to compare trajectories: $Q_t = \langle \tau_1, \tau_2 \rangle$
- 2) User gives response w.r.t. unknown true reward $R(\tau; \theta^*) : u_t \in \{\tau_1 > \tau_2, \tau_2 > \tau_1\}$
- 3) Standard Bayesian update on estimate $\boldsymbol{\theta}$

 $P(\boldsymbol{\theta}|u_1, \dots, u_t; Q_1, \dots, Q_t)$ $\propto P(u_1, \dots, u_t; Q_1, \dots, Q_t | \boldsymbol{\theta}) P(\boldsymbol{\theta})$

LOCAL JUSTICE AND MACHINE LEARNING: MODELING AND INFERRING **DYNAMIC ETHICAL PREFERENCES AROUND HIGH-STAKES ALLOCATIONS** Violet (Xinying) Chen (vchen3@stevens.edu)¹, Joshua Williams², Hoda Heidari², Derek Leben²

¹Stevens Institute of Technology ² Carnegie Mellon University

	Exa	ample: Medical Res
akes domain over time who should be irness ture and infer	 In m prind Hypo Sus Sus Diffe 	hedical emergency: decision corr ciples vary \rightarrow moral preferences e othetical viral epidemic: allocate a ceptible \rightarrow Cured (Immune) ceptible \rightarrow Infected \rightarrow Dece erent moral principles \rightarrow prioritizi
es, i.e. quantify contexts. urce allocation: unction ward Model	Prio Favors	oritarian the <i>most vulnerable</i> members
	Dist Favor t for soci	ributive hose with <i>instrumental values</i> iety and/or family
	Res ^r Favor t	torative hose owed compensation due
n <i>n</i> groups.	to their	past actions and efforts
sion. of transitioning	C	Specification on cure all $s_{t,i} = (x_i^t, v_i^t, d_i^t)$: in group <i>i</i> at t • x_i^t : the cured proportion (have
$, s_T, a_T, s_{T+1}$) () v much reward	5	• v_i^s : the susceptible proportio • d_i^t : the deceased proportion without the resource)
	A	a_i^t : the proportion of time t 's res
		D() - (0 A)

R

0.35

(X) X X

<u>면</u> 0.25

0.20

9 0.15

0.10

0.05

0.00

0.0

Example of two-piece linear reward

0.8

1.0

0.6

cured proportion x_i

Elderly

— Caregiver

Military

Med. Vulnerable

Public-health Compl.

Essen. Worker

ource Allocation

- ntext shifts \rightarrow relevant moral evolve
- a virus cure in phases

eased

ing different population groups

- G1. The elderly
- G2. The medically vulnerable
- G3. Caregivers
- G4. Essential workers
- G5. People with current or previous military service G6. People compliant with public health recommendations

ocation example

time t,

- ve received the resource)
- on (still require the resource)
- (have suffered negatively
- sources allocated to group *i*.
- $P(s_{t+1}|s_t, a_t) \in \{0,1\}$: deterministic transition
- Piecewise reward: moral preferences shift between pieces.

$$R(x_1^t, ..., x_n^t; \mathbf{w}^*, \mathbf{c}^*) = w_i^* \sum_i min\{x_i^t, c_i^*\}$$

- Before a group is well-cured:
- $x_i \in [0, c_i]$: cures given to group *i* rewarded linearly with **weight** *w*_{*i*}

After a group is well-cured:

 $x_i \in (c_i, 1]$: more cures are not rewarded after group *i* is sufficiently cured (x_i exceeds **threshold** c_i)

Experiment Design and Findings

- **Key observations:**

• Synthetic population of 10000 people; 6 groups for prioritization. • Survey run on Amazon Mechanical Turk: 33 responses collected. • A participant answers 20 questions: each question is chosen to maximize information gain about w^* , c^* based on current estimates • w^*, c^* are unavailable: use written justifications (respondents) explain why a group should/should not be prioritized) as proxies

 \succ The inferred rewards show good consistency with justifications. Participants' moral judgments are highly diverse: they sometimes hold explicit opinions towards certain groups.

From averaging the inferred cumulative rewards, at relatively low cured levels, caregivers are the most prioritized.