
Equalizing Credit Opportunity in Algorithms:
Aligning Algorithmic Fairness Research with
U.S. Fair Lending Regulation

ML Fairness Research
u Assumes access to protected class 

information
u Focus on comparing outcomes or 

sometimes causal influence of input 
features

u Implicitly assumes some version of 
“disparate impact” theory can be 
directly applied to fairness statistics

U.S. Discrimination Law/Policy
u Strong limitations on access to 

protected class information
u Assign meaning/appropriateness to 

the use of different types of input 
features

u “Discrimination” is based on 
principles of procedural justice, not 
defined by a statistic

In our paper, we:
u Provide an overview of the current landscape of credit-specific U.S. 

anti-discrimination law and how it pertains to algorithms for Fair ML 
researchers

u Contextualize Fair ML metrics and results in terms of those metrics 
to the realities of credit data to identify ”discrimination risks” in the 
credit setting

u Discuss regulatory opportunities to address those risks

Discrimination Risk: 
Credit Invisibility
Bias due to sampling processes
in training data

Discrimination Risk: 
Alternative Data
Observational bias and 
measurement validity

Discrimination Risk: 
Model Complexity

Multivariate discriminatory 
effects are affected by model 
capacity

Regulatory Opportunities
Expanding or encouraging protected 
data collection

Treating discrimination risk as a form of 
financial model risk

Equal Credit Opportunity Act
u Strict data collection rules
u Difficult to prove discrimination occurred
u Enforced by multiple agencies
u Language and history does not neatly imply the relevance of any 

particular fairness statistics

u Some alternative data (i.e. cash flow data) may allow more accurate 
underwriting of previously “credit invisible” applicants

u Other alternative data may be predictive of credit risk for different reasons than 
traditional data, and may not be related to qualities that we should accept as a 
reasonable basis for decision-making

u Historical loan repayment data is less 
available on historically 
underrepresented groups, which can 
lead to higher error on those groups

u May result in issuing more loans that 
cannot be paid back

u Low-capacity models on data which is disparately predictive between classes 
may result in low cost-based fairness

u High-capacity models on predictive data can be have more unequal outcomes 
than simple models if there is bias in the labels
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The Problem of Parallel Conversations


