Generalizing Group Fairness via Utilities

Motivation

Symptom

Numerous bespoke interpretations of group fairness definitions exist as attempts to extend them to specific applications.

Problem

Group fairness definitions assume a classification setting.

Solution

Use <u>utility functions</u> to define group fairness.

- Utility functions generalize better than classification variables.
- In addition to the decision-maker's utility function, make use of a <u>benefit function</u> that represents the individual's utility from encountering a given decision-maker policy.
- Generalize "qualification" as the existence of a <u>mutually beneficial</u> outcome for both the decision-maker and the individual.

Fairness in Classification

Demographic Parity

$$P(\hat{Y} = 1 \mid Z = 0) = P(\hat{Y} = 1 \mid Z = 1)$$

Equal Opportunity

$$P(\hat{Y}=1 \mid Y=1, Z=0) = P(\hat{Y}=1 \mid Y=1, Z=1)$$

Limiting Assumptions

Classification group fairness definitions usually make the following limiting assumptions:

- Equal predictions have equal outcomes.
 Counter example: loan applications.
- 2. Observed values of the target variable are independent of predictions.

Counter example: recidivism prediction for prison sentencing.

3. The objective is to predict some unobserved target variable.

Counter example: reinforcement learning or clustering applications.

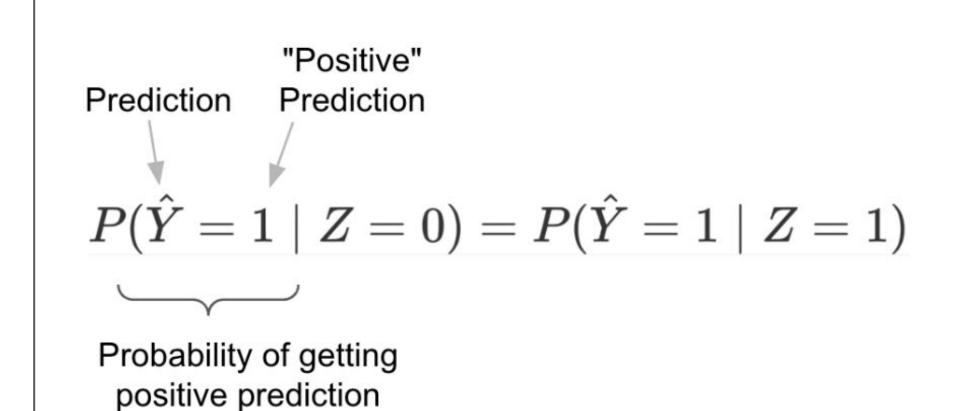
4. Decisions for one individual do not impact other individuals.

Counter example: Drawing congressional district boundaries (via clustering).

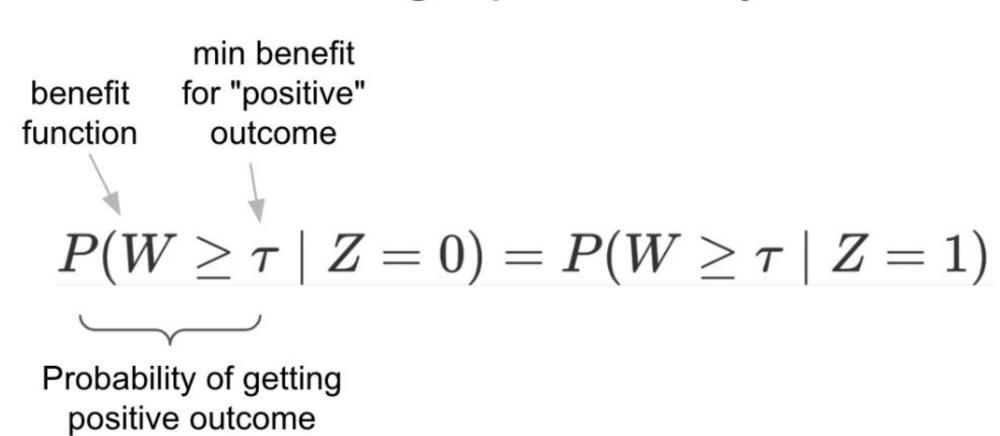
Jack Blandin, Ian Kash University of Illinois at Chicago

Classification vs Utility Fairness Definitions

Classification Demographic Parity



Benefit Demographic Parity



Classification Equal Opportunity

$$P(\hat{Y}=1|Y=1,A=0) = P(\hat{Y}=1|Y=1,A=1)$$

$$\text{qualification} \\ \text{indicator}$$

Counterfactual Utility Equal Opportunity

$$P(W \geq \tau \mid \Gamma = 1, Z = 0) = P(W \geq \tau \mid \Gamma = 1, Z = 1)$$
 mutually beneficial outcome indicator
$$\Gamma = \begin{cases} 1 & \text{if } \exists \hat{Y}' : W_{\hat{Y}'} \geq \tau \land C_{\hat{Y}'} \leq \rho \\ 0 & \text{otherwise} \end{cases}$$

Generalizing Interpretation of "Qualified"

Classification Equal Opportunity

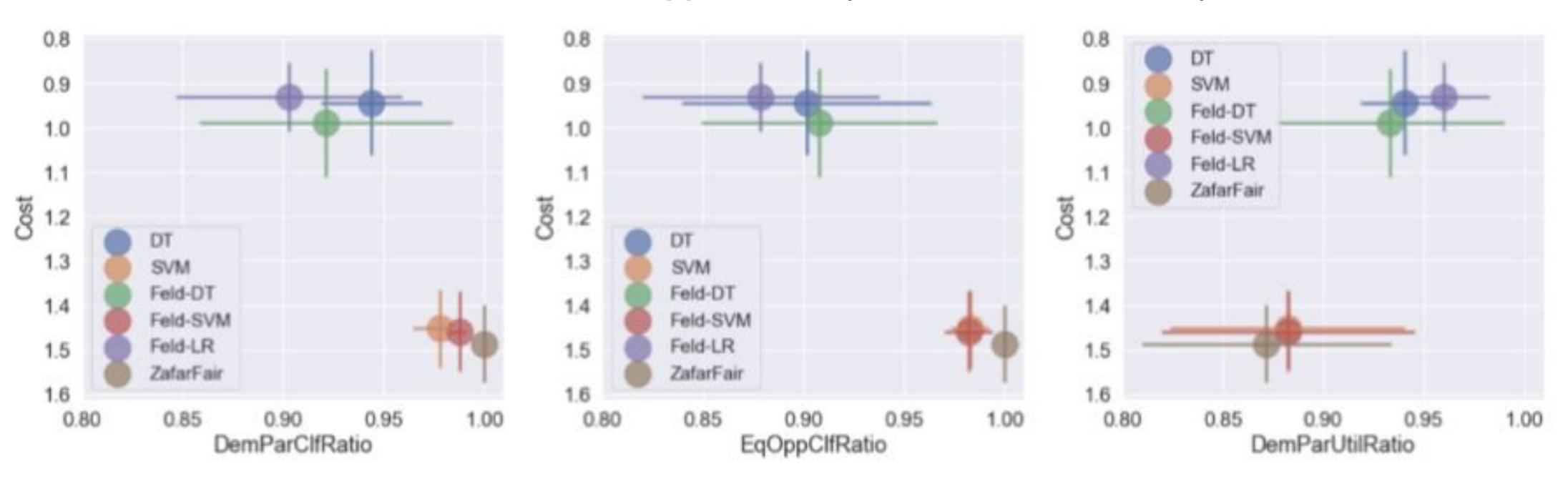
The probability that a <u>qualified</u> individual receives the beneficial outcome is independent of the individual's protected attribute.

Counterfactual Utility Equal Opportunity

For the subset of individuals where there <u>exists a</u> <u>mutually beneficial outcome</u> for both the individual and the decision-algorithm, the probability that a beneficial individual outcome occurring is independent of the individual's protected attribute.

Applications

Prediction-Outcome Disconnect for Loan Applications (German Credit Dataset)



Self-Fulfilling Prophecies with Recidivism Prediction

		$P(Y=1 \hat{Y}=1)=0$	$P(Y=1 \hat{Y}=1)=1$
		Dangerous	Backlash
$P(Y=1 \hat{Y}=0)=0$	Detained	Unq	CfUtil
	Released	Unq	Clf, CfUtil
		Preventable	Safe
$P(Y=1 \hat{Y}=0)=1$	Detained	Clf	Clf, CfUtil
	Released	Unq	Clf, CfUtil

References

- Blandin, J. and Kash, I. Fairness through counterfactual utilities. arXiv preprint arXiv:2108.05315, 2021.
- Imai, Kosuke, and Zhichao Jiang. "Principal Fairness for Human and Algorithmic Decision-Making." arXiv preprint arXiv:2005.10400, 2020.
- Dua, D., & Graff, C. (2017). Uci machine learning repository.