Ranked Prioritization of Groups in Combinatorial Bandit Allocation

Lily Xu¹, Arpita Biswas¹, Fei Fang², and Milind Tambe¹

¹Harvard University ²Carnegie Mellon University

Motivation

In online resource allocation, actions may have disparate impacts on different groups.

	elephant	>	banteng	>	muntjac	>	wild pig	
ED	Critically endangered		Endangered		Least concern decreasing		Least concern	poach

Actions with high reward may not be the same as actions that do most for vulnerable groups.

Problem statement

Allocate resources in an online fashion across groups with ranked priority

Challenges

- Combinatorial allocation
- How to measure "prioritization" with rankings
- Rewards unknown *a priori*

RankedCUCB

- **Novel bandit objective** for prioritization in ranked settings
- **No-regret analysis** for weighted objective
- **Empirical results** on real-world data

