

# Planning to Fairly Allocate: Probabilistic Fairness in the Restless Bandit Setting



Christine Herlihy\* Aviva Prins\* Aravind Srinivasan John P. Dickerson

University of Maryland, College Park

#### Introduction

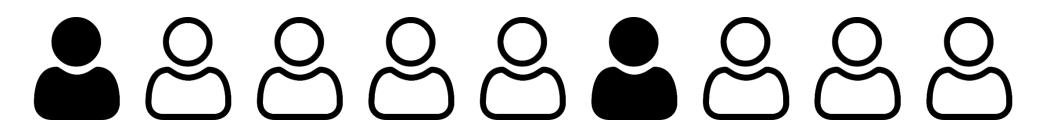


Figure 1. In the restless multi-armed bandit setting, select  $k \ll N$  arms at each timestep t. Each arm evolves according to an action-dependent Markov Decision Process (MDP).

Find a probabilistic policy  $\pi^*$  that maximizes reward and enforces the budget and (new!) distributive fairness constraints.

$$\pi^* = \arg\max_{\pi \in \mathbb{R}^N} R^{\pi}(S)$$
 s.t.  $\sum_i p_i = k$  and  $\forall i, p_i \in [\ell, u]$ 

#### The Whittle Index:

$$W(b_t^i) = \inf_{m} \left\{ m \mid V_m(b_t^i, a_t^i = 0) \ge V_m(b_t^i, a_t^i = 1) \right\}$$

$$V_m(b_t^i) = \max \left\{ m + r(b_t^i) + \beta V_m \left( b_{t+1}^i \right) \right\}$$
 passive 
$$r(b_t^i) + \beta \left[ b_t^i V_m \left( P_{1,1}^1 \right) + (1 - b_t^i) V_m \left( P_{0,1}^1 \right) \right]$$
 active

# Why distributive fairness?

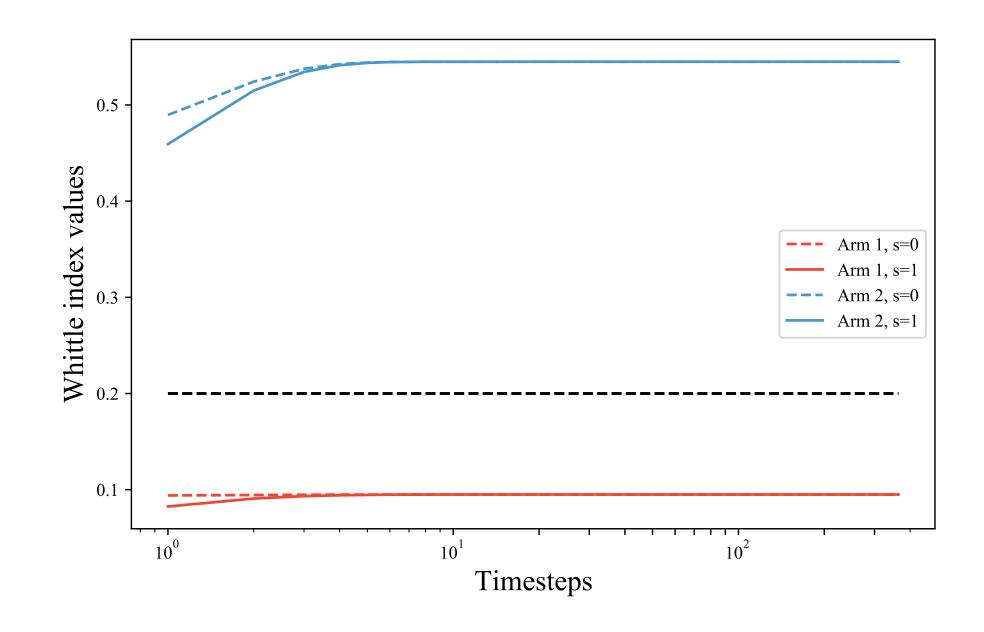
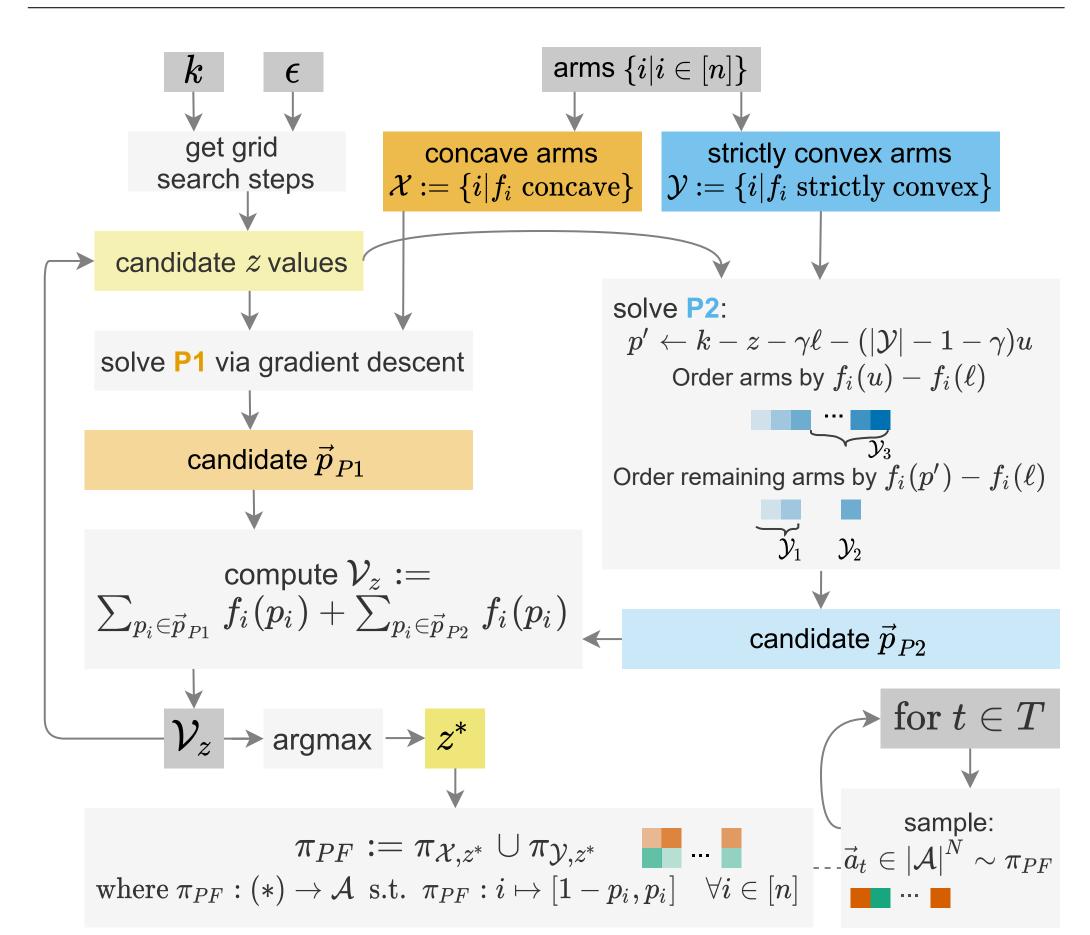


Figure 2. The Whittle index values for Arm 1 and 2 can be separated by a horizontal line, so (WLOG) Arm 2 will always be chosen over Arm 1 because its index value dominates.

# PROBFAIR: a probabilistically fair policy



## **Experimental evaluation**

| Random <sup>§</sup>         | Select $k$ arms uniformly at random at each $t$ .           |  |  |
|-----------------------------|-------------------------------------------------------------|--|--|
| Round-Robin <sup>§</sup> ,‡ | Select $k$ arms at each $t$ in fixed, sequential order.     |  |  |
| TW-based                    | Select top- $k$ arms based on Whittle index values.         |  |  |
| heuristics <sup>‡</sup>     | Available arms vary based on time-indexed                   |  |  |
|                             | fairness constraint satisfaction [3].                       |  |  |
| Risk-Aware                  | Select top- $k$ arms based on Whittle index values,         |  |  |
| TW (RA-TW) <sup>†</sup>     | TW) <sup>†</sup> with a concave reward function [2].        |  |  |
| Threshold                   | hreshold Select top- $k$ arms based on Whittle index values |  |  |
| Whittle (TW)*               | [4, 1].                                                     |  |  |

Table 1. Comparison policies

| $\min_i \mathbb{E}[	ext{# pulls}]$ | s]   Policy  | $ \mathbb{E}[IB] $ (%) | $\mathbb{E}[EMD]$ (%) |
|------------------------------------|--------------|------------------------|-----------------------|
| 10                                 | PF $\ell$    | $88.45 \pm 0.27$       | $81.11 \pm 0.18$      |
| $\ell = 0.056$                     | First $\nu$  | $88.75 \pm 0.27$       | $68.19 \pm 0.14$      |
| $\nu = 18$                         | Last $\nu$   | $89.32 \pm 0.26$       | $69.17 \pm 0.11$      |
|                                    | Random $\nu$ | 92.02 $\pm$ 0.18       | $71.24 \pm 0.13$      |
| 18                                 | PF $\ell$    | $81.57 \pm 0.29$       | $60.04 \pm 0.22$      |
| $\ell = 0.1$                       | First $\nu$  | $81.07 \pm 0.31$       | $47.44 \pm 0.09$      |
| $\nu = 10$                         | Last $\nu$   | $81.30 \pm 0.29$       | $48.47 \pm 0.08$      |
|                                    | Random $\nu$ | $84.33 \pm 0.26$       | $51.67 \pm 0.10$      |
| 30                                 | PF $\ell$    | $68.22 \pm 0.33$       | $22.66 \pm 0.17$      |
| $\ell = 0.167$                     | First $\nu$  | $70.22 \pm 0.30$       | 19.10 $\pm$ 0.03      |
| $\nu = 6$                          | Last $\nu$   | $69.41 \pm 0.33$       | $19.70 \pm 0.03$      |
|                                    | Random $\nu$ | $70.52 \pm 0.34$       | $19.96 \pm 0.04$      |
| comparison                         | TW           | $100.00 \pm 0.00$      | $100.00 \pm 0.00$     |
|                                    | RA-TW        | $72.73 \pm 0.38$       | $ 115.14 \pm 0.26 $   |
|                                    | Random       | $54.66 \pm 0.35$       | $10.44 \pm 0.11$      |
| baseline                           | NoAct        | $0.00 \pm 0.00$        | $76.08 \pm 0.11$      |
|                                    | RR           | $ 62.96 \pm 0.33 $     | $0.00 \pm 0.00$       |

Table 2.  $\mathbb{E}[IB]$  and  $\mathbb{E}[EMD]$  by policy and fairness bracket

**tl;dr**: Fairer hyperparameters ( $\ell \uparrow, \nu \downarrow$ ), yield decreased  $\mathbb{E}[IB]$  and  $\mathbb{E}[EMD]$ , reflecting improved individual fairness at the expense of total reward. For each ( $\ell, \nu$ ), ProbFair performs competitively with respect to the best-performing heuristic (which, like TW, are state-aware).

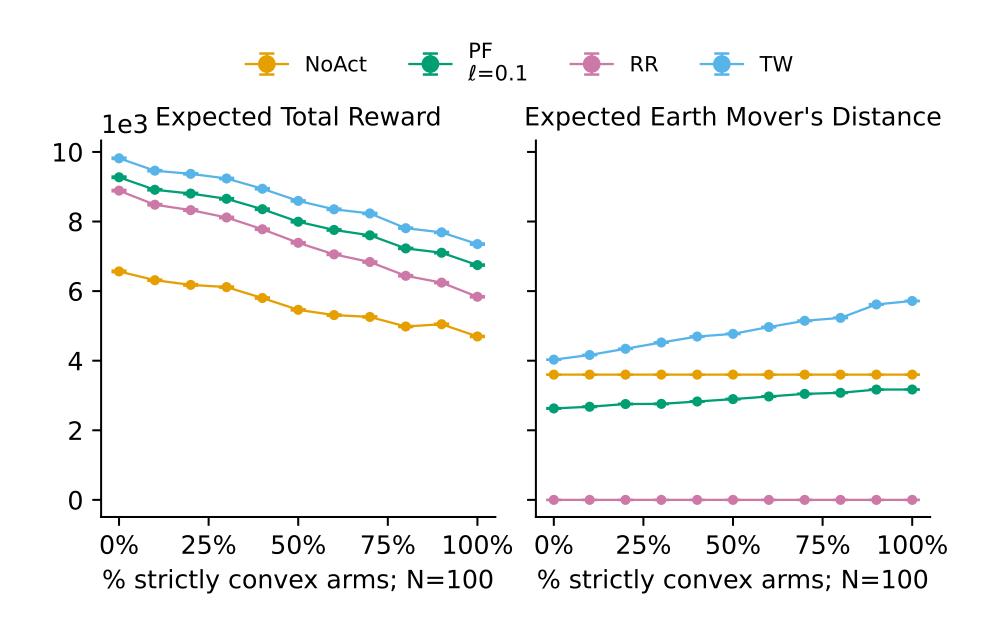


Figure 4. ProbFair evaluated on a breadth of randomly-generated cohorts.

**tl;dr**:  $\mathbb{E}[R]$  predictably declines for all policies as the % of unfavorable arms increases, while  $\mathbb{E}[EMD]$  rises for TW and ProbFair. ProbFair's *normalized* performance remains stable even as cohort composition is varied.

## References

- [1] A. Mate, J. Killian, H. Xu, A. Perrault, and M. Tambe. Collapsing Bandits and Their Application to Public Health Intervention. Advances in Neural Information Processing Systems (NeurIPS), 33, 2020.
- [2] A. Mate, A. Perrault, and M. Tambe. Risk-Aware Interventions in Public Health: Planning with Restless Multi-Armed Bandits. In 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), London, UK, 2021.
- [3] A. Prins, A. Mate, J. A. Killian, R. Abebe, and M. Tambe. Incorporating Healthcare Motivated Constraints in Restless Bandit Based Resource Allocation. *preprint*, 2020.
- [4] P. Whittle. Restless Bandits: Activity Allocation in a Changing World. *Journal of Applied Probability*, 25(A):287–298, 1988.