

Planning to Fairly Allocate: Probabilistic Fairness in the Restless Bandit Setting

Christine Herlihy* Aviva Prins* Aravind Srinivasan John P. Dickerson

University of Maryland, College Park

Introduction

Figure 1. In the restless multi-armed bandit setting, select $k \ll N$ arms at each timestep t. Each arm evolves according to an action-dependent Markov Decision Process (MDP).

Find a probabilistic policy π^* that maximizes reward and enforces the budget and (new!) distributive fairness constraints.

$$\pi^* = \arg\max_{\pi \in \mathbb{R}^N} R^{\pi}(S)$$
 s.t. $\sum_i p_i = k$ and $\forall i, p_i \in [\ell, u]$

The Whittle Index:

$$W(b_t^i) = \inf_{m} \left\{ m \mid V_m(b_t^i, a_t^i = 0) \ge V_m(b_t^i, a_t^i = 1) \right\}$$

$$V_m(b_t^i) = \max \left\{ m + r(b_t^i) + \beta V_m \left(b_{t+1}^i \right) \right\}$$
 passive
$$r(b_t^i) + \beta \left[b_t^i V_m \left(P_{1,1}^1 \right) + (1 - b_t^i) V_m \left(P_{0,1}^1 \right) \right]$$
 active

Why distributive fairness?

Figure 2. The Whittle index values for Arm 1 and 2 can be separated by a horizontal line, so (WLOG) Arm 2 will always be chosen over Arm 1 because its index value dominates.

PROBFAIR: a probabilistically fair policy

Experimental evaluation

Random [§]	Select k arms uniformly at random at each t .		
Round-Robin [§] ,‡	Select k arms at each t in fixed, sequential order.		
TW-based	Select top- k arms based on Whittle index values.		
heuristics [‡]	Available arms vary based on time-indexed		
	fairness constraint satisfaction [3].		
Risk-Aware	Select top- k arms based on Whittle index values,		
TW (RA-TW) [†]	TW) [†] with a concave reward function [2].		
Threshold	hreshold Select top- k arms based on Whittle index values		
Whittle (TW)*	[4, 1].		

Table 1. Comparison policies

$\min_i \mathbb{E}[ext{# pulls}]$	s] Policy	$ \mathbb{E}[IB] $ (%)	$\mathbb{E}[EMD]$ (%)
10	PF ℓ	88.45 ± 0.27	81.11 ± 0.18
$\ell = 0.056$	First ν	88.75 ± 0.27	68.19 ± 0.14
$\nu = 18$	Last ν	89.32 ± 0.26	69.17 ± 0.11
	Random ν	92.02 \pm 0.18	71.24 ± 0.13
18	PF ℓ	81.57 ± 0.29	60.04 ± 0.22
$\ell = 0.1$	First ν	81.07 ± 0.31	47.44 ± 0.09
$\nu = 10$	Last ν	81.30 ± 0.29	48.47 ± 0.08
	Random ν	84.33 ± 0.26	51.67 ± 0.10
30	PF ℓ	68.22 ± 0.33	22.66 ± 0.17
$\ell = 0.167$	First ν	70.22 ± 0.30	19.10 \pm 0.03
$\nu = 6$	Last ν	69.41 ± 0.33	19.70 ± 0.03
	Random ν	70.52 ± 0.34	19.96 ± 0.04
comparison	TW	100.00 ± 0.00	100.00 ± 0.00
	RA-TW	72.73 ± 0.38	$ 115.14 \pm 0.26 $
	Random	54.66 ± 0.35	10.44 ± 0.11
baseline	NoAct	0.00 ± 0.00	76.08 ± 0.11
	RR	$ 62.96 \pm 0.33 $	0.00 ± 0.00

Table 2. $\mathbb{E}[IB]$ and $\mathbb{E}[EMD]$ by policy and fairness bracket

tl;dr: Fairer hyperparameters ($\ell \uparrow, \nu \downarrow$), yield decreased $\mathbb{E}[IB]$ and $\mathbb{E}[EMD]$, reflecting improved individual fairness at the expense of total reward. For each (ℓ, ν), ProbFair performs competitively with respect to the best-performing heuristic (which, like TW, are state-aware).

Figure 4. ProbFair evaluated on a breadth of randomly-generated cohorts.

tl;dr: $\mathbb{E}[R]$ predictably declines for all policies as the % of unfavorable arms increases, while $\mathbb{E}[EMD]$ rises for TW and ProbFair. ProbFair's *normalized* performance remains stable even as cohort composition is varied.

References

- [1] A. Mate, J. Killian, H. Xu, A. Perrault, and M. Tambe. Collapsing Bandits and Their Application to Public Health Intervention. Advances in Neural Information Processing Systems (NeurIPS), 33, 2020.
- [2] A. Mate, A. Perrault, and M. Tambe. Risk-Aware Interventions in Public Health: Planning with Restless Multi-Armed Bandits. In 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), London, UK, 2021.
- [3] A. Prins, A. Mate, J. A. Killian, R. Abebe, and M. Tambe. Incorporating Healthcare Motivated Constraints in Restless Bandit Based Resource Allocation. *preprint*, 2020.
- [4] P. Whittle. Restless Bandits: Activity Allocation in a Changing World. *Journal of Applied Probability*, 25(A):287–298, 1988.