Planning to Fairly Allocate: Probabilistic Fairness in the Restless Bandit Setting Christine Herlihy* Aviva Prins* Aravind Srinivasan John P. Dickerson University of Maryland, College Park #### Introduction Figure 1. In the restless multi-armed bandit setting, select $k \ll N$ arms at each timestep t. Each arm evolves according to an action-dependent Markov Decision Process (MDP). Find a probabilistic policy π^* that maximizes reward and enforces the budget and (new!) distributive fairness constraints. $$\pi^* = \arg\max_{\pi \in \mathbb{R}^N} R^{\pi}(S)$$ s.t. $\sum_i p_i = k$ and $\forall i, p_i \in [\ell, u]$ #### The Whittle Index: $$W(b_t^i) = \inf_{m} \left\{ m \mid V_m(b_t^i, a_t^i = 0) \ge V_m(b_t^i, a_t^i = 1) \right\}$$ $$V_m(b_t^i) = \max \left\{ m + r(b_t^i) + \beta V_m \left(b_{t+1}^i \right) \right\}$$ passive $$r(b_t^i) + \beta \left[b_t^i V_m \left(P_{1,1}^1 \right) + (1 - b_t^i) V_m \left(P_{0,1}^1 \right) \right]$$ active # Why distributive fairness? Figure 2. The Whittle index values for Arm 1 and 2 can be separated by a horizontal line, so (WLOG) Arm 2 will always be chosen over Arm 1 because its index value dominates. # PROBFAIR: a probabilistically fair policy ## **Experimental evaluation** | Random [§] | Select k arms uniformly at random at each t . | | | |-----------------------------|---|--|--| | Round-Robin [§] ,‡ | Select k arms at each t in fixed, sequential order. | | | | TW-based | Select top- k arms based on Whittle index values. | | | | heuristics [‡] | Available arms vary based on time-indexed | | | | | fairness constraint satisfaction [3]. | | | | Risk-Aware | Select top- k arms based on Whittle index values, | | | | TW (RA-TW) [†] | TW) [†] with a concave reward function [2]. | | | | Threshold | hreshold Select top- k arms based on Whittle index values | | | | Whittle (TW)* | [4, 1]. | | | Table 1. Comparison policies | $\min_i \mathbb{E}[ext{# pulls}]$ | s] Policy | $ \mathbb{E}[IB] $ (%) | $\mathbb{E}[EMD]$ (%) | |------------------------------------|--------------|------------------------|-----------------------| | 10 | PF ℓ | 88.45 ± 0.27 | 81.11 ± 0.18 | | $\ell = 0.056$ | First ν | 88.75 ± 0.27 | 68.19 ± 0.14 | | $\nu = 18$ | Last ν | 89.32 ± 0.26 | 69.17 ± 0.11 | | | Random ν | 92.02 \pm 0.18 | 71.24 ± 0.13 | | 18 | PF ℓ | 81.57 ± 0.29 | 60.04 ± 0.22 | | $\ell = 0.1$ | First ν | 81.07 ± 0.31 | 47.44 ± 0.09 | | $\nu = 10$ | Last ν | 81.30 ± 0.29 | 48.47 ± 0.08 | | | Random ν | 84.33 ± 0.26 | 51.67 ± 0.10 | | 30 | PF ℓ | 68.22 ± 0.33 | 22.66 ± 0.17 | | $\ell = 0.167$ | First ν | 70.22 ± 0.30 | 19.10 \pm 0.03 | | $\nu = 6$ | Last ν | 69.41 ± 0.33 | 19.70 ± 0.03 | | | Random ν | 70.52 ± 0.34 | 19.96 ± 0.04 | | comparison | TW | 100.00 ± 0.00 | 100.00 ± 0.00 | | | RA-TW | 72.73 ± 0.38 | $ 115.14 \pm 0.26 $ | | | Random | 54.66 ± 0.35 | 10.44 ± 0.11 | | baseline | NoAct | 0.00 ± 0.00 | 76.08 ± 0.11 | | | RR | $ 62.96 \pm 0.33 $ | 0.00 ± 0.00 | Table 2. $\mathbb{E}[IB]$ and $\mathbb{E}[EMD]$ by policy and fairness bracket **tl;dr**: Fairer hyperparameters ($\ell \uparrow, \nu \downarrow$), yield decreased $\mathbb{E}[IB]$ and $\mathbb{E}[EMD]$, reflecting improved individual fairness at the expense of total reward. For each (ℓ, ν), ProbFair performs competitively with respect to the best-performing heuristic (which, like TW, are state-aware). Figure 4. ProbFair evaluated on a breadth of randomly-generated cohorts. **tl;dr**: $\mathbb{E}[R]$ predictably declines for all policies as the % of unfavorable arms increases, while $\mathbb{E}[EMD]$ rises for TW and ProbFair. ProbFair's *normalized* performance remains stable even as cohort composition is varied. ## References - [1] A. Mate, J. Killian, H. Xu, A. Perrault, and M. Tambe. Collapsing Bandits and Their Application to Public Health Intervention. Advances in Neural Information Processing Systems (NeurIPS), 33, 2020. - [2] A. Mate, A. Perrault, and M. Tambe. Risk-Aware Interventions in Public Health: Planning with Restless Multi-Armed Bandits. In 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), London, UK, 2021. - [3] A. Prins, A. Mate, J. A. Killian, R. Abebe, and M. Tambe. Incorporating Healthcare Motivated Constraints in Restless Bandit Based Resource Allocation. *preprint*, 2020. - [4] P. Whittle. Restless Bandits: Activity Allocation in a Changing World. *Journal of Applied Probability*, 25(A):287–298, 1988.