Planning to Fairly Allocate: Probabilistic
Fairness In the Restless Bandit Setting

Christine Herliny™  Aviva Prins’

Aravind Srinivasan

John P. Dickerson

University of Maryland, College Park

Introduction
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Figure 1. In the restless multi-armed bandit setting, select k < N arms at each timestep
t. Each arm evolves according to an action-dependent Markov Decision Process (MDP).

Find a probabilistic policy #* that maximizes reward and
enforces the budget and (new!) distributive fairness constraints.
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The Whittle Index:

W(B}) = inf {m | Vin(b}, af = 0) > Viu(bf, af = 1) }
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Why distributive fairness?
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Figure 2. The Whittle index values for Arm 1 and 2 can be separated by a horizontal line,
so (WLOG) Arm 2 will always be chosen over Arm 1 because its index value dominates.

PROBFAIR: a probabilistically fair policy
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get grid concave arms strictly convex arms
search steps X := {i|f; concave} Y := {i|f; strictly convex}
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Experimental evaluation

Randoms3 Select k arms uniformly at random at each t.

Round-Robin$ ¥ | Select k arms at each t in fixed, sequential order.
Select top-k arms based on Whittle index values.

TW-based . L

heurt aﬁsei Available arms vary based on time-indexed
cUr>Hes fairness constraint satisfaction [3].

Risk-Aware | Select top-k arms based on Whittle index values,

TW (RA-TW)T | with a concave reward function [2].

Threshold | Select top-k arms based on Whittle index values
Whittle (TW)* |4, 1].

Table 1. Comparison policies

min; E[# pulls] | Policy E[IB] (%) E[EMD] (%)
10 PF (18845 £0.2/7 |81.11 £0.18
¢ =0.056 |First v|88.7/75 £0.2/7 68.19 +0.14
v =18 Last v|89.32 £0.26 [69.1/ £0.11
Random v 92.02 +0.18 |/1.24 4+ 0.13
18 PF ¢181.57 £0.29 160.04 +£0.22
¢ =0.1 First v|81.0/ £0.31 47.44 + 0.09
v =10 Last v|81.30 £ 0.29 [48.4/ 4 0.08
Random v (84.33 +0.26 |(51.6/7 £+ 0.10
30 PF (168.22 +£0.33 [22.66 £0.17/
¢ =0.167 |First v|/0.22 +£0.30 19.10 + 0.03
v =20 Last v69.41 +£0.33 [19.7/0 £+ 0.03
Random v|70.52 +£0.34 1996 4+ 0.04
comparison TW 100.00 + 0.00/100.00 #+ 0.00
RA-TW /2.73 £0.38 [115.14 £ 0.26
Random |54.66 + 0.35 [10.44 £+ 0.11
baseline NoAct 0.00 £0.00 |/76.08 £0.11
RR 62.96 +0.33 0.00 +0.00

Table 2. E[IB] and E[EMD] by policy and fairness bracket

tl;dr: Fairer hyperparameters (¢ 1, v |), yield decreased E[IB] and E[EMD],
reflecting improved individual fairness at the expense of total reward.
For each (¢, v), ProbFair performs competitively with respect to the best-
performing heuristic (which, like TW, are state-aware).
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Figure 4. ProbFair evaluated on a breadth of randomly-generated cohorts.

tl;dr: E[R| predictably declines for all policies as the % of unfavorable arms
increases, while E[EMD] rises for TW and ProbFair. ProbFair's normalized
performance remains stable even as cohort composition is varied.
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