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Introduction

Figure 1. In the restless multi-armed bandit setting, select k � N arms at each timestep

t. Each arm evolves according to an action-dependent Markov Decision Process (MDP).

Find a probabilistic policy π∗ that maximizes reward and

enforces the budget and (new!) distributive fairness constraints.
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Why distributive fairness?
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Figure 2. The Whittle index values for Arm 1 and 2 can be separated by a horizontal line,

so (WLOG) Arm 2 will always be chosen over Arm 1 because its index value dominates.

PROBFAIR: a probabilistically fair policy
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Figure 3. Outline of our ProbFair algorithm.

Experimental evaluation

Random§ Select k arms uniformly at random at each t.

Round-Robin§,‡ Select k arms at each t in fixed, sequential order.

TW-based

heuristics‡

Select top-k arms based on Whittle index values.

Available arms vary based on time-indexed

fairness constraint satisfaction [3].

Risk-Aware

TW (RA-TW)†
Select top-k arms based on Whittle index values,

with a concave reward function [2].

Threshold

Whittle (TW)?
Select top-k arms based on Whittle index values

[4, 1].

Table 1. Comparison policies

mini E[# pulls] Policy E[IB] (%) E[EMD] (%)
10 PF ` 88.45 ± 0.27 81.11 ± 0.18

` = 0.056 First ν 88.75 ± 0.27 68.19 ± 0.14

ν = 18 Last ν 89.32 ± 0.26 69.17 ± 0.11

Random ν 92.02 ± 0.18 71.24 ± 0.13

18 PF ` 81.57 ± 0.29 60.04 ± 0.22

` = 0.1 First ν 81.07 ± 0.31 47.44 ± 0.09

ν = 10 Last ν 81.30 ± 0.29 48.47 ± 0.08

Random ν 84.33 ± 0.26 51.67 ± 0.10

30 PF ` 68.22 ± 0.33 22.66 ± 0.17

` = 0.167 First ν 70.22 ± 0.30 19.10 ± 0.03

ν = 6 Last ν 69.41 ± 0.33 19.70 ± 0.03

Random ν 70.52 ± 0.34 19.96 ± 0.04

comparison
TW 100.00 ± 0.00 100.00 ± 0.00

RA-TW 72.73 ± 0.38 115.14 ± 0.26

baseline

Random 54.66 ± 0.35 10.44 ± 0.11

NoAct 0.00 ± 0.00 76.08 ± 0.11

RR 62.96 ± 0.33 0.00 ± 0.00

Table 2. E[IB] and E[EMD] by policy and fairness bracket

tl;dr: Fairer hyperparameters (` ↑, ν ↓), yield decreased E[IB] and E[EMD],
reflecting improved individual fairness at the expense of total reward.

For each (`, ν), ProbFair performs competitively with respect to the best-

performing heuristic (which, like TW, are state-aware).
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Figure 4. ProbFair evaluated on a breadth of randomly-generated cohorts.

tl;dr: E[R] predictably declines for all policies as the % of unfavorable arms

increases, while E[EMD] rises for TW and ProbFair. ProbFair’s normalized

performance remains stable even as cohort composition is varied.
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