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Optimization of limited monitoring resources
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* Common low-resource public health challenge: » Goalis to build a more accurate RMAB simulator " i T

= |dentify unique, richer behavior patterns for
agents from data and use as model to simulate
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= Example: mMitra program by ARMMAN in India
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= Service calls boosts engagement
= Whom to select for service call? _ Multi-Model Simulator (MMSim) Muliple behavior models fo J UTILITY OF MMSim

simulation discovered from data
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Even with perfect data, Markov simulator is not ' :
expressive enough; only crudely fits actual data

MMSim build richer models, hence is more = Evaluating performance loss from inaccurate
expressive and fits data closely predictive model
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RMAB consists of N arms; planner can pull k (k<N) Apportioning Improved Quality to Simulator . Week
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Engagements

Each beneficiary (arm) is a 2-state 2-action MDP
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Transition probabilities of arm are stationary
(Markov assumption)
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Real data (~23,000 real beneficiaries) does not |
Comparison of weekly engagement RMSE
conform to Markov model well | e Actum - -
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Markov assumption of RMAB model may not
represent real data well
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Transition probabilities could be non-stationary
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Week Week Week probabilities for evaluating RMABs can be valuable
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